Cargando…
Optimizing the learning rate for adaptive estimation of neural encoding models
Closed-loop neurotechnologies often need to adaptively learn an encoding model that relates the neural activity to the brain state, and is used for brain state decoding. The speed and accuracy of adaptive learning algorithms are critically affected by the learning rate, which dictates how fast model...
Autores principales: | Hsieh, Han-Lin, Shanechi, Maryam M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5993334/ https://www.ncbi.nlm.nih.gov/pubmed/29813069 http://dx.doi.org/10.1371/journal.pcbi.1006168 |
Ejemplares similares
-
Robust Brain-Machine Interface Design Using Optimal Feedback Control Modeling and Adaptive Point Process Filtering
por: Shanechi, Maryam M., et al.
Publicado: (2016) -
Sensory feedback can give rise to neural rotations
por: Sani, Omid G, et al.
Publicado: (2021) -
Neural encoding of task-dependent errors during adaptive learning
por: Kao, Chang-Hao, et al.
Publicado: (2020) -
Rapid control and feedback rates enhance neuroprosthetic control
por: Shanechi, Maryam M., et al.
Publicado: (2017) -
A neural encoder for earthquake rate forecasting
por: Zlydenko, Oleg, et al.
Publicado: (2023)