Cargando…
Soil Carbon Dynamics in Soybean Cropland and Forests in Mato Grosso, Brazil
Climate and land use models predict that tropical deforestation and conversion to cropland will produce a large flux of soil carbon (C) to the atmosphere from accelerated decomposition of soil organic matter (SOM). However, the C flux from the deep tropical soils on which most intensive crop agricul...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5993338/ https://www.ncbi.nlm.nih.gov/pubmed/29938142 http://dx.doi.org/10.1002/2017JG004269 |
_version_ | 1783330231473405952 |
---|---|
author | Nagy, R. Chelsea Porder, Stephen Brando, Paulo Davidson, Eric A. Figueira, Adelaine Michela e Silva Neill, Christopher Riskin, Shelby Trumbore, Susan |
author_facet | Nagy, R. Chelsea Porder, Stephen Brando, Paulo Davidson, Eric A. Figueira, Adelaine Michela e Silva Neill, Christopher Riskin, Shelby Trumbore, Susan |
author_sort | Nagy, R. Chelsea |
collection | PubMed |
description | Climate and land use models predict that tropical deforestation and conversion to cropland will produce a large flux of soil carbon (C) to the atmosphere from accelerated decomposition of soil organic matter (SOM). However, the C flux from the deep tropical soils on which most intensive crop agriculture is now expanding remains poorly constrained. To quantify the effect of intensive agriculture on tropical soil C, we compared C stocks, radiocarbon, and stable C isotopes to 2 m depth from forests and soybean cropland created from former pasture in Mato Grosso, Brazil. We hypothesized that soil disturbance, higher soil temperatures (+2°C), and lower OM inputs from soybeans would increase soil C turnover and deplete C stocks relative to nearby forest soils. However, we found reduced C concentrations and stocks only in surface soils (0–10 cm) of soybean cropland compared with forests, and these differences could be explained by soil mixing during plowing. The amount and Δ(14)C of respired CO(2) to 50 cm depth were significantly lower from soybean soils, yet CO(2) production at 2 m deep was low in both forest and soybean soils. Mean surface soil δ(13)C decreased by 0.5‰ between 2009 and 2013 in soybean cropland, suggesting low OM inputs from soybeans. Together these findings suggest the following: (1) soil C is relatively resistant to changes in land use and (2) conversion to cropland caused a small, measurable reduction in the fast‐cycling C pool through reduced OM inputs, mobilization of older C from soil mixing, and/or destabilization of SOM in surface soils. |
format | Online Article Text |
id | pubmed-5993338 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-59933382018-06-20 Soil Carbon Dynamics in Soybean Cropland and Forests in Mato Grosso, Brazil Nagy, R. Chelsea Porder, Stephen Brando, Paulo Davidson, Eric A. Figueira, Adelaine Michela e Silva Neill, Christopher Riskin, Shelby Trumbore, Susan J Geophys Res Biogeosci Research Articles Climate and land use models predict that tropical deforestation and conversion to cropland will produce a large flux of soil carbon (C) to the atmosphere from accelerated decomposition of soil organic matter (SOM). However, the C flux from the deep tropical soils on which most intensive crop agriculture is now expanding remains poorly constrained. To quantify the effect of intensive agriculture on tropical soil C, we compared C stocks, radiocarbon, and stable C isotopes to 2 m depth from forests and soybean cropland created from former pasture in Mato Grosso, Brazil. We hypothesized that soil disturbance, higher soil temperatures (+2°C), and lower OM inputs from soybeans would increase soil C turnover and deplete C stocks relative to nearby forest soils. However, we found reduced C concentrations and stocks only in surface soils (0–10 cm) of soybean cropland compared with forests, and these differences could be explained by soil mixing during plowing. The amount and Δ(14)C of respired CO(2) to 50 cm depth were significantly lower from soybean soils, yet CO(2) production at 2 m deep was low in both forest and soybean soils. Mean surface soil δ(13)C decreased by 0.5‰ between 2009 and 2013 in soybean cropland, suggesting low OM inputs from soybeans. Together these findings suggest the following: (1) soil C is relatively resistant to changes in land use and (2) conversion to cropland caused a small, measurable reduction in the fast‐cycling C pool through reduced OM inputs, mobilization of older C from soil mixing, and/or destabilization of SOM in surface soils. John Wiley and Sons Inc. 2018-01-05 2018-01 /pmc/articles/PMC5993338/ /pubmed/29938142 http://dx.doi.org/10.1002/2017JG004269 Text en ©2017. The Authors. This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made. |
spellingShingle | Research Articles Nagy, R. Chelsea Porder, Stephen Brando, Paulo Davidson, Eric A. Figueira, Adelaine Michela e Silva Neill, Christopher Riskin, Shelby Trumbore, Susan Soil Carbon Dynamics in Soybean Cropland and Forests in Mato Grosso, Brazil |
title | Soil Carbon Dynamics in Soybean Cropland and Forests in Mato Grosso, Brazil |
title_full | Soil Carbon Dynamics in Soybean Cropland and Forests in Mato Grosso, Brazil |
title_fullStr | Soil Carbon Dynamics in Soybean Cropland and Forests in Mato Grosso, Brazil |
title_full_unstemmed | Soil Carbon Dynamics in Soybean Cropland and Forests in Mato Grosso, Brazil |
title_short | Soil Carbon Dynamics in Soybean Cropland and Forests in Mato Grosso, Brazil |
title_sort | soil carbon dynamics in soybean cropland and forests in mato grosso, brazil |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5993338/ https://www.ncbi.nlm.nih.gov/pubmed/29938142 http://dx.doi.org/10.1002/2017JG004269 |
work_keys_str_mv | AT nagyrchelsea soilcarbondynamicsinsoybeancroplandandforestsinmatogrossobrazil AT porderstephen soilcarbondynamicsinsoybeancroplandandforestsinmatogrossobrazil AT brandopaulo soilcarbondynamicsinsoybeancroplandandforestsinmatogrossobrazil AT davidsonerica soilcarbondynamicsinsoybeancroplandandforestsinmatogrossobrazil AT figueiraadelainemichelaesilva soilcarbondynamicsinsoybeancroplandandforestsinmatogrossobrazil AT neillchristopher soilcarbondynamicsinsoybeancroplandandforestsinmatogrossobrazil AT riskinshelby soilcarbondynamicsinsoybeancroplandandforestsinmatogrossobrazil AT trumboresusan soilcarbondynamicsinsoybeancroplandandforestsinmatogrossobrazil |