Cargando…

Forskolin attenuates doxorubicin-induced accumulation of asymmetric dimethylarginine and s-adenosylhomocysteine via methyltransferase activity in leukemic monocytes

Doxorubicin (DOX) is an antitumor drug, associated with cardiomyopathy. Strategies to address DOX-cardiomyopathy are scarce. Here, we identify the effect of forskolin (FSK) on DOX-induced-asymmetric-dimethylarginine (ADMA) accumulation in monocytoid cells. DOX-challenge led to i) augmented cytotoxic...

Descripción completa

Detalles Bibliográficos
Autores principales: Ramachandran, Sandhiya, Loganathan, Swetha, Cheeran, Vinnie, Charles, Soniya, Munuswamy-Ramanujan, Ganesh, Ramasamy, Mohankumar, Raj, Vijay, Mala, Kanchana
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5993357/
https://www.ncbi.nlm.nih.gov/pubmed/29892545
http://dx.doi.org/10.1016/j.lrr.2018.02.001
Descripción
Sumario:Doxorubicin (DOX) is an antitumor drug, associated with cardiomyopathy. Strategies to address DOX-cardiomyopathy are scarce. Here, we identify the effect of forskolin (FSK) on DOX-induced-asymmetric-dimethylarginine (ADMA) accumulation in monocytoid cells. DOX-challenge led to i) augmented cytotoxicity, reactive-oxygen-species (ROS) production and methyltransferase-enzyme-activity identified as ADMA and s-adenosylhomocysteine (SAH) accumulation (SAH-A). However, except cytotoxicity, other DOX effects were decreased by metformin and FSK. FSK, did not alter the DOX-induced cytotoxic effect, but, decreased SAH-A by >50% and a combination of three drugs restored physiological methyltransferase-enzyme-activity. Together, protective effect of FSK against DOX-induced SAH-A is associated with mitigated methyltransferase-activity, a one-of-a-kind report.