Cargando…

All-Optical Electrophysiology for High-Throughput Functional Characterization of a Human iPSC-Derived Motor Neuron Model of ALS

Human induced pluripotent stem cell (iPSC)-derived neurons are an attractive substrate for modeling disease, yet the heterogeneity of these cultures presents a challenge for functional characterization by manual patch-clamp electrophysiology. Here, we describe an optimized all-optical electrophysiol...

Descripción completa

Detalles Bibliográficos
Autores principales: Kiskinis, Evangelos, Kralj, Joel M., Zou, Peng, Weinstein, Eli N., Zhang, Hongkang, Tsioras, Konstantinos, Wiskow, Ole, Ortega, J. Alberto, Eggan, Kevin, Cohen, Adam E.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5993648/
https://www.ncbi.nlm.nih.gov/pubmed/29779896
http://dx.doi.org/10.1016/j.stemcr.2018.04.020
_version_ 1783330256340385792
author Kiskinis, Evangelos
Kralj, Joel M.
Zou, Peng
Weinstein, Eli N.
Zhang, Hongkang
Tsioras, Konstantinos
Wiskow, Ole
Ortega, J. Alberto
Eggan, Kevin
Cohen, Adam E.
author_facet Kiskinis, Evangelos
Kralj, Joel M.
Zou, Peng
Weinstein, Eli N.
Zhang, Hongkang
Tsioras, Konstantinos
Wiskow, Ole
Ortega, J. Alberto
Eggan, Kevin
Cohen, Adam E.
author_sort Kiskinis, Evangelos
collection PubMed
description Human induced pluripotent stem cell (iPSC)-derived neurons are an attractive substrate for modeling disease, yet the heterogeneity of these cultures presents a challenge for functional characterization by manual patch-clamp electrophysiology. Here, we describe an optimized all-optical electrophysiology, “Optopatch,” pipeline for high-throughput functional characterization of human iPSC-derived neuronal cultures. We demonstrate the method in a human iPSC-derived motor neuron (iPSC-MN) model of amyotrophic lateral sclerosis (ALS). In a comparison of iPSC-MNs with an ALS-causing mutation (SOD1 A4V) with their genome-corrected controls, the mutants showed elevated spike rates under weak or no stimulus and greater likelihood of entering depolarization block under strong optogenetic stimulus. We compared these results with numerical simulations of simple conductance-based neuronal models and with literature results in this and other iPSC-based models of ALS. Our data and simulations suggest that deficits in slowly activating potassium channels may underlie the changes in electrophysiology in the SOD1 A4V mutation.
format Online
Article
Text
id pubmed-5993648
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-59936482018-06-11 All-Optical Electrophysiology for High-Throughput Functional Characterization of a Human iPSC-Derived Motor Neuron Model of ALS Kiskinis, Evangelos Kralj, Joel M. Zou, Peng Weinstein, Eli N. Zhang, Hongkang Tsioras, Konstantinos Wiskow, Ole Ortega, J. Alberto Eggan, Kevin Cohen, Adam E. Stem Cell Reports Resource Human induced pluripotent stem cell (iPSC)-derived neurons are an attractive substrate for modeling disease, yet the heterogeneity of these cultures presents a challenge for functional characterization by manual patch-clamp electrophysiology. Here, we describe an optimized all-optical electrophysiology, “Optopatch,” pipeline for high-throughput functional characterization of human iPSC-derived neuronal cultures. We demonstrate the method in a human iPSC-derived motor neuron (iPSC-MN) model of amyotrophic lateral sclerosis (ALS). In a comparison of iPSC-MNs with an ALS-causing mutation (SOD1 A4V) with their genome-corrected controls, the mutants showed elevated spike rates under weak or no stimulus and greater likelihood of entering depolarization block under strong optogenetic stimulus. We compared these results with numerical simulations of simple conductance-based neuronal models and with literature results in this and other iPSC-based models of ALS. Our data and simulations suggest that deficits in slowly activating potassium channels may underlie the changes in electrophysiology in the SOD1 A4V mutation. Elsevier 2018-05-17 /pmc/articles/PMC5993648/ /pubmed/29779896 http://dx.doi.org/10.1016/j.stemcr.2018.04.020 Text en © 2018 The Author(s) http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Resource
Kiskinis, Evangelos
Kralj, Joel M.
Zou, Peng
Weinstein, Eli N.
Zhang, Hongkang
Tsioras, Konstantinos
Wiskow, Ole
Ortega, J. Alberto
Eggan, Kevin
Cohen, Adam E.
All-Optical Electrophysiology for High-Throughput Functional Characterization of a Human iPSC-Derived Motor Neuron Model of ALS
title All-Optical Electrophysiology for High-Throughput Functional Characterization of a Human iPSC-Derived Motor Neuron Model of ALS
title_full All-Optical Electrophysiology for High-Throughput Functional Characterization of a Human iPSC-Derived Motor Neuron Model of ALS
title_fullStr All-Optical Electrophysiology for High-Throughput Functional Characterization of a Human iPSC-Derived Motor Neuron Model of ALS
title_full_unstemmed All-Optical Electrophysiology for High-Throughput Functional Characterization of a Human iPSC-Derived Motor Neuron Model of ALS
title_short All-Optical Electrophysiology for High-Throughput Functional Characterization of a Human iPSC-Derived Motor Neuron Model of ALS
title_sort all-optical electrophysiology for high-throughput functional characterization of a human ipsc-derived motor neuron model of als
topic Resource
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5993648/
https://www.ncbi.nlm.nih.gov/pubmed/29779896
http://dx.doi.org/10.1016/j.stemcr.2018.04.020
work_keys_str_mv AT kiskinisevangelos allopticalelectrophysiologyforhighthroughputfunctionalcharacterizationofahumanipscderivedmotorneuronmodelofals
AT kraljjoelm allopticalelectrophysiologyforhighthroughputfunctionalcharacterizationofahumanipscderivedmotorneuronmodelofals
AT zoupeng allopticalelectrophysiologyforhighthroughputfunctionalcharacterizationofahumanipscderivedmotorneuronmodelofals
AT weinsteinelin allopticalelectrophysiologyforhighthroughputfunctionalcharacterizationofahumanipscderivedmotorneuronmodelofals
AT zhanghongkang allopticalelectrophysiologyforhighthroughputfunctionalcharacterizationofahumanipscderivedmotorneuronmodelofals
AT tsioraskonstantinos allopticalelectrophysiologyforhighthroughputfunctionalcharacterizationofahumanipscderivedmotorneuronmodelofals
AT wiskowole allopticalelectrophysiologyforhighthroughputfunctionalcharacterizationofahumanipscderivedmotorneuronmodelofals
AT ortegajalberto allopticalelectrophysiologyforhighthroughputfunctionalcharacterizationofahumanipscderivedmotorneuronmodelofals
AT eggankevin allopticalelectrophysiologyforhighthroughputfunctionalcharacterizationofahumanipscderivedmotorneuronmodelofals
AT cohenadame allopticalelectrophysiologyforhighthroughputfunctionalcharacterizationofahumanipscderivedmotorneuronmodelofals