Cargando…
All-Optical Electrophysiology for High-Throughput Functional Characterization of a Human iPSC-Derived Motor Neuron Model of ALS
Human induced pluripotent stem cell (iPSC)-derived neurons are an attractive substrate for modeling disease, yet the heterogeneity of these cultures presents a challenge for functional characterization by manual patch-clamp electrophysiology. Here, we describe an optimized all-optical electrophysiol...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5993648/ https://www.ncbi.nlm.nih.gov/pubmed/29779896 http://dx.doi.org/10.1016/j.stemcr.2018.04.020 |
_version_ | 1783330256340385792 |
---|---|
author | Kiskinis, Evangelos Kralj, Joel M. Zou, Peng Weinstein, Eli N. Zhang, Hongkang Tsioras, Konstantinos Wiskow, Ole Ortega, J. Alberto Eggan, Kevin Cohen, Adam E. |
author_facet | Kiskinis, Evangelos Kralj, Joel M. Zou, Peng Weinstein, Eli N. Zhang, Hongkang Tsioras, Konstantinos Wiskow, Ole Ortega, J. Alberto Eggan, Kevin Cohen, Adam E. |
author_sort | Kiskinis, Evangelos |
collection | PubMed |
description | Human induced pluripotent stem cell (iPSC)-derived neurons are an attractive substrate for modeling disease, yet the heterogeneity of these cultures presents a challenge for functional characterization by manual patch-clamp electrophysiology. Here, we describe an optimized all-optical electrophysiology, “Optopatch,” pipeline for high-throughput functional characterization of human iPSC-derived neuronal cultures. We demonstrate the method in a human iPSC-derived motor neuron (iPSC-MN) model of amyotrophic lateral sclerosis (ALS). In a comparison of iPSC-MNs with an ALS-causing mutation (SOD1 A4V) with their genome-corrected controls, the mutants showed elevated spike rates under weak or no stimulus and greater likelihood of entering depolarization block under strong optogenetic stimulus. We compared these results with numerical simulations of simple conductance-based neuronal models and with literature results in this and other iPSC-based models of ALS. Our data and simulations suggest that deficits in slowly activating potassium channels may underlie the changes in electrophysiology in the SOD1 A4V mutation. |
format | Online Article Text |
id | pubmed-5993648 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-59936482018-06-11 All-Optical Electrophysiology for High-Throughput Functional Characterization of a Human iPSC-Derived Motor Neuron Model of ALS Kiskinis, Evangelos Kralj, Joel M. Zou, Peng Weinstein, Eli N. Zhang, Hongkang Tsioras, Konstantinos Wiskow, Ole Ortega, J. Alberto Eggan, Kevin Cohen, Adam E. Stem Cell Reports Resource Human induced pluripotent stem cell (iPSC)-derived neurons are an attractive substrate for modeling disease, yet the heterogeneity of these cultures presents a challenge for functional characterization by manual patch-clamp electrophysiology. Here, we describe an optimized all-optical electrophysiology, “Optopatch,” pipeline for high-throughput functional characterization of human iPSC-derived neuronal cultures. We demonstrate the method in a human iPSC-derived motor neuron (iPSC-MN) model of amyotrophic lateral sclerosis (ALS). In a comparison of iPSC-MNs with an ALS-causing mutation (SOD1 A4V) with their genome-corrected controls, the mutants showed elevated spike rates under weak or no stimulus and greater likelihood of entering depolarization block under strong optogenetic stimulus. We compared these results with numerical simulations of simple conductance-based neuronal models and with literature results in this and other iPSC-based models of ALS. Our data and simulations suggest that deficits in slowly activating potassium channels may underlie the changes in electrophysiology in the SOD1 A4V mutation. Elsevier 2018-05-17 /pmc/articles/PMC5993648/ /pubmed/29779896 http://dx.doi.org/10.1016/j.stemcr.2018.04.020 Text en © 2018 The Author(s) http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Resource Kiskinis, Evangelos Kralj, Joel M. Zou, Peng Weinstein, Eli N. Zhang, Hongkang Tsioras, Konstantinos Wiskow, Ole Ortega, J. Alberto Eggan, Kevin Cohen, Adam E. All-Optical Electrophysiology for High-Throughput Functional Characterization of a Human iPSC-Derived Motor Neuron Model of ALS |
title | All-Optical Electrophysiology for High-Throughput Functional Characterization of a Human iPSC-Derived Motor Neuron Model of ALS |
title_full | All-Optical Electrophysiology for High-Throughput Functional Characterization of a Human iPSC-Derived Motor Neuron Model of ALS |
title_fullStr | All-Optical Electrophysiology for High-Throughput Functional Characterization of a Human iPSC-Derived Motor Neuron Model of ALS |
title_full_unstemmed | All-Optical Electrophysiology for High-Throughput Functional Characterization of a Human iPSC-Derived Motor Neuron Model of ALS |
title_short | All-Optical Electrophysiology for High-Throughput Functional Characterization of a Human iPSC-Derived Motor Neuron Model of ALS |
title_sort | all-optical electrophysiology for high-throughput functional characterization of a human ipsc-derived motor neuron model of als |
topic | Resource |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5993648/ https://www.ncbi.nlm.nih.gov/pubmed/29779896 http://dx.doi.org/10.1016/j.stemcr.2018.04.020 |
work_keys_str_mv | AT kiskinisevangelos allopticalelectrophysiologyforhighthroughputfunctionalcharacterizationofahumanipscderivedmotorneuronmodelofals AT kraljjoelm allopticalelectrophysiologyforhighthroughputfunctionalcharacterizationofahumanipscderivedmotorneuronmodelofals AT zoupeng allopticalelectrophysiologyforhighthroughputfunctionalcharacterizationofahumanipscderivedmotorneuronmodelofals AT weinsteinelin allopticalelectrophysiologyforhighthroughputfunctionalcharacterizationofahumanipscderivedmotorneuronmodelofals AT zhanghongkang allopticalelectrophysiologyforhighthroughputfunctionalcharacterizationofahumanipscderivedmotorneuronmodelofals AT tsioraskonstantinos allopticalelectrophysiologyforhighthroughputfunctionalcharacterizationofahumanipscderivedmotorneuronmodelofals AT wiskowole allopticalelectrophysiologyforhighthroughputfunctionalcharacterizationofahumanipscderivedmotorneuronmodelofals AT ortegajalberto allopticalelectrophysiologyforhighthroughputfunctionalcharacterizationofahumanipscderivedmotorneuronmodelofals AT eggankevin allopticalelectrophysiologyforhighthroughputfunctionalcharacterizationofahumanipscderivedmotorneuronmodelofals AT cohenadame allopticalelectrophysiologyforhighthroughputfunctionalcharacterizationofahumanipscderivedmotorneuronmodelofals |