Cargando…
Scaling law for excitons in 2D perovskite quantum wells
Ruddlesden–Popper halide perovskites are 2D solution-processed quantum wells with a general formula A(2)A’(n-1)M(n)X(3n+1), where optoelectronic properties can be tuned by varying the perovskite layer thickness (n-value), and have recently emerged as efficient semiconductors with technologically rel...
Autores principales: | , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5993799/ https://www.ncbi.nlm.nih.gov/pubmed/29884900 http://dx.doi.org/10.1038/s41467-018-04659-x |
_version_ | 1783330285501284352 |
---|---|
author | Blancon, J.-C. Stier, A. V. Tsai, H. Nie, W. Stoumpos, C. C. Traoré, B. Pedesseau, L. Kepenekian, M. Katsutani, F. Noe, G. T. Kono, J. Tretiak, S. Crooker, S. A. Katan, C. Kanatzidis, M. G. Crochet, J. J. Even, J. Mohite, A. D. |
author_facet | Blancon, J.-C. Stier, A. V. Tsai, H. Nie, W. Stoumpos, C. C. Traoré, B. Pedesseau, L. Kepenekian, M. Katsutani, F. Noe, G. T. Kono, J. Tretiak, S. Crooker, S. A. Katan, C. Kanatzidis, M. G. Crochet, J. J. Even, J. Mohite, A. D. |
author_sort | Blancon, J.-C. |
collection | PubMed |
description | Ruddlesden–Popper halide perovskites are 2D solution-processed quantum wells with a general formula A(2)A’(n-1)M(n)X(3n+1), where optoelectronic properties can be tuned by varying the perovskite layer thickness (n-value), and have recently emerged as efficient semiconductors with technologically relevant stability. However, fundamental questions concerning the nature of optical resonances (excitons or free carriers) and the exciton reduced mass, and their scaling with quantum well thickness, which are critical for designing efficient optoelectronic devices, remain unresolved. Here, using optical spectroscopy and 60-Tesla magneto-absorption supported by modeling, we unambiguously demonstrate that the optical resonances arise from tightly bound excitons with both exciton reduced masses and binding energies decreasing, respectively, from 0.221 m(0) to 0.186 m(0) and from 470 meV to 125 meV with increasing thickness from n equals 1 to 5. Based on this study we propose a general scaling law to determine the binding energy of excitons in perovskite quantum wells of any layer thickness. |
format | Online Article Text |
id | pubmed-5993799 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-59937992018-06-11 Scaling law for excitons in 2D perovskite quantum wells Blancon, J.-C. Stier, A. V. Tsai, H. Nie, W. Stoumpos, C. C. Traoré, B. Pedesseau, L. Kepenekian, M. Katsutani, F. Noe, G. T. Kono, J. Tretiak, S. Crooker, S. A. Katan, C. Kanatzidis, M. G. Crochet, J. J. Even, J. Mohite, A. D. Nat Commun Article Ruddlesden–Popper halide perovskites are 2D solution-processed quantum wells with a general formula A(2)A’(n-1)M(n)X(3n+1), where optoelectronic properties can be tuned by varying the perovskite layer thickness (n-value), and have recently emerged as efficient semiconductors with technologically relevant stability. However, fundamental questions concerning the nature of optical resonances (excitons or free carriers) and the exciton reduced mass, and their scaling with quantum well thickness, which are critical for designing efficient optoelectronic devices, remain unresolved. Here, using optical spectroscopy and 60-Tesla magneto-absorption supported by modeling, we unambiguously demonstrate that the optical resonances arise from tightly bound excitons with both exciton reduced masses and binding energies decreasing, respectively, from 0.221 m(0) to 0.186 m(0) and from 470 meV to 125 meV with increasing thickness from n equals 1 to 5. Based on this study we propose a general scaling law to determine the binding energy of excitons in perovskite quantum wells of any layer thickness. Nature Publishing Group UK 2018-06-08 /pmc/articles/PMC5993799/ /pubmed/29884900 http://dx.doi.org/10.1038/s41467-018-04659-x Text en © The Author(s) 2018 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Article Blancon, J.-C. Stier, A. V. Tsai, H. Nie, W. Stoumpos, C. C. Traoré, B. Pedesseau, L. Kepenekian, M. Katsutani, F. Noe, G. T. Kono, J. Tretiak, S. Crooker, S. A. Katan, C. Kanatzidis, M. G. Crochet, J. J. Even, J. Mohite, A. D. Scaling law for excitons in 2D perovskite quantum wells |
title | Scaling law for excitons in 2D perovskite quantum wells |
title_full | Scaling law for excitons in 2D perovskite quantum wells |
title_fullStr | Scaling law for excitons in 2D perovskite quantum wells |
title_full_unstemmed | Scaling law for excitons in 2D perovskite quantum wells |
title_short | Scaling law for excitons in 2D perovskite quantum wells |
title_sort | scaling law for excitons in 2d perovskite quantum wells |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5993799/ https://www.ncbi.nlm.nih.gov/pubmed/29884900 http://dx.doi.org/10.1038/s41467-018-04659-x |
work_keys_str_mv | AT blanconjc scalinglawforexcitonsin2dperovskitequantumwells AT stierav scalinglawforexcitonsin2dperovskitequantumwells AT tsaih scalinglawforexcitonsin2dperovskitequantumwells AT niew scalinglawforexcitonsin2dperovskitequantumwells AT stoumposcc scalinglawforexcitonsin2dperovskitequantumwells AT traoreb scalinglawforexcitonsin2dperovskitequantumwells AT pedesseaul scalinglawforexcitonsin2dperovskitequantumwells AT kepenekianm scalinglawforexcitonsin2dperovskitequantumwells AT katsutanif scalinglawforexcitonsin2dperovskitequantumwells AT noegt scalinglawforexcitonsin2dperovskitequantumwells AT konoj scalinglawforexcitonsin2dperovskitequantumwells AT tretiaks scalinglawforexcitonsin2dperovskitequantumwells AT crookersa scalinglawforexcitonsin2dperovskitequantumwells AT katanc scalinglawforexcitonsin2dperovskitequantumwells AT kanatzidismg scalinglawforexcitonsin2dperovskitequantumwells AT crochetjj scalinglawforexcitonsin2dperovskitequantumwells AT evenj scalinglawforexcitonsin2dperovskitequantumwells AT mohitead scalinglawforexcitonsin2dperovskitequantumwells |