Cargando…

Scaling law for excitons in 2D perovskite quantum wells

Ruddlesden–Popper halide perovskites are 2D solution-processed quantum wells with a general formula A(2)A’(n-1)M(n)X(3n+1), where optoelectronic properties can be tuned by varying the perovskite layer thickness (n-value), and have recently emerged as efficient semiconductors with technologically rel...

Descripción completa

Detalles Bibliográficos
Autores principales: Blancon, J.-C., Stier, A. V., Tsai, H., Nie, W., Stoumpos, C. C., Traoré, B., Pedesseau, L., Kepenekian, M., Katsutani, F., Noe, G. T., Kono, J., Tretiak, S., Crooker, S. A., Katan, C., Kanatzidis, M. G., Crochet, J. J., Even, J., Mohite, A. D.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5993799/
https://www.ncbi.nlm.nih.gov/pubmed/29884900
http://dx.doi.org/10.1038/s41467-018-04659-x
_version_ 1783330285501284352
author Blancon, J.-C.
Stier, A. V.
Tsai, H.
Nie, W.
Stoumpos, C. C.
Traoré, B.
Pedesseau, L.
Kepenekian, M.
Katsutani, F.
Noe, G. T.
Kono, J.
Tretiak, S.
Crooker, S. A.
Katan, C.
Kanatzidis, M. G.
Crochet, J. J.
Even, J.
Mohite, A. D.
author_facet Blancon, J.-C.
Stier, A. V.
Tsai, H.
Nie, W.
Stoumpos, C. C.
Traoré, B.
Pedesseau, L.
Kepenekian, M.
Katsutani, F.
Noe, G. T.
Kono, J.
Tretiak, S.
Crooker, S. A.
Katan, C.
Kanatzidis, M. G.
Crochet, J. J.
Even, J.
Mohite, A. D.
author_sort Blancon, J.-C.
collection PubMed
description Ruddlesden–Popper halide perovskites are 2D solution-processed quantum wells with a general formula A(2)A’(n-1)M(n)X(3n+1), where optoelectronic properties can be tuned by varying the perovskite layer thickness (n-value), and have recently emerged as efficient semiconductors with technologically relevant stability. However, fundamental questions concerning the nature of optical resonances (excitons or free carriers) and the exciton reduced mass, and their scaling with quantum well thickness, which are critical for designing efficient optoelectronic devices, remain unresolved. Here, using optical spectroscopy and 60-Tesla magneto-absorption supported by modeling, we unambiguously demonstrate that the optical resonances arise from tightly bound excitons with both exciton reduced masses and binding energies decreasing, respectively, from 0.221 m(0) to 0.186 m(0) and from 470 meV to 125 meV with increasing thickness from n equals 1 to 5. Based on this study we propose a general scaling law to determine the binding energy of excitons in perovskite quantum wells of any layer thickness.
format Online
Article
Text
id pubmed-5993799
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-59937992018-06-11 Scaling law for excitons in 2D perovskite quantum wells Blancon, J.-C. Stier, A. V. Tsai, H. Nie, W. Stoumpos, C. C. Traoré, B. Pedesseau, L. Kepenekian, M. Katsutani, F. Noe, G. T. Kono, J. Tretiak, S. Crooker, S. A. Katan, C. Kanatzidis, M. G. Crochet, J. J. Even, J. Mohite, A. D. Nat Commun Article Ruddlesden–Popper halide perovskites are 2D solution-processed quantum wells with a general formula A(2)A’(n-1)M(n)X(3n+1), where optoelectronic properties can be tuned by varying the perovskite layer thickness (n-value), and have recently emerged as efficient semiconductors with technologically relevant stability. However, fundamental questions concerning the nature of optical resonances (excitons or free carriers) and the exciton reduced mass, and their scaling with quantum well thickness, which are critical for designing efficient optoelectronic devices, remain unresolved. Here, using optical spectroscopy and 60-Tesla magneto-absorption supported by modeling, we unambiguously demonstrate that the optical resonances arise from tightly bound excitons with both exciton reduced masses and binding energies decreasing, respectively, from 0.221 m(0) to 0.186 m(0) and from 470 meV to 125 meV with increasing thickness from n equals 1 to 5. Based on this study we propose a general scaling law to determine the binding energy of excitons in perovskite quantum wells of any layer thickness. Nature Publishing Group UK 2018-06-08 /pmc/articles/PMC5993799/ /pubmed/29884900 http://dx.doi.org/10.1038/s41467-018-04659-x Text en © The Author(s) 2018 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Blancon, J.-C.
Stier, A. V.
Tsai, H.
Nie, W.
Stoumpos, C. C.
Traoré, B.
Pedesseau, L.
Kepenekian, M.
Katsutani, F.
Noe, G. T.
Kono, J.
Tretiak, S.
Crooker, S. A.
Katan, C.
Kanatzidis, M. G.
Crochet, J. J.
Even, J.
Mohite, A. D.
Scaling law for excitons in 2D perovskite quantum wells
title Scaling law for excitons in 2D perovskite quantum wells
title_full Scaling law for excitons in 2D perovskite quantum wells
title_fullStr Scaling law for excitons in 2D perovskite quantum wells
title_full_unstemmed Scaling law for excitons in 2D perovskite quantum wells
title_short Scaling law for excitons in 2D perovskite quantum wells
title_sort scaling law for excitons in 2d perovskite quantum wells
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5993799/
https://www.ncbi.nlm.nih.gov/pubmed/29884900
http://dx.doi.org/10.1038/s41467-018-04659-x
work_keys_str_mv AT blanconjc scalinglawforexcitonsin2dperovskitequantumwells
AT stierav scalinglawforexcitonsin2dperovskitequantumwells
AT tsaih scalinglawforexcitonsin2dperovskitequantumwells
AT niew scalinglawforexcitonsin2dperovskitequantumwells
AT stoumposcc scalinglawforexcitonsin2dperovskitequantumwells
AT traoreb scalinglawforexcitonsin2dperovskitequantumwells
AT pedesseaul scalinglawforexcitonsin2dperovskitequantumwells
AT kepenekianm scalinglawforexcitonsin2dperovskitequantumwells
AT katsutanif scalinglawforexcitonsin2dperovskitequantumwells
AT noegt scalinglawforexcitonsin2dperovskitequantumwells
AT konoj scalinglawforexcitonsin2dperovskitequantumwells
AT tretiaks scalinglawforexcitonsin2dperovskitequantumwells
AT crookersa scalinglawforexcitonsin2dperovskitequantumwells
AT katanc scalinglawforexcitonsin2dperovskitequantumwells
AT kanatzidismg scalinglawforexcitonsin2dperovskitequantumwells
AT crochetjj scalinglawforexcitonsin2dperovskitequantumwells
AT evenj scalinglawforexcitonsin2dperovskitequantumwells
AT mohitead scalinglawforexcitonsin2dperovskitequantumwells