Cargando…
Tensorial blind source separation for improved analysis of multi-omic data
There is an increased need for integrative analyses of multi-omic data. We present and benchmark a novel tensorial independent component analysis (tICA) algorithm against current state-of-the-art methods. We find that tICA outperforms competing methods in identifying biological sources of data varia...
Autores principales: | Teschendorff, Andrew E., Jing, Han, Paul, Dirk S., Virta, Joni, Nordhausen, Klaus |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5994057/ https://www.ncbi.nlm.nih.gov/pubmed/29884221 http://dx.doi.org/10.1186/s13059-018-1455-8 |
Ejemplares similares
-
Fast tensorial JADE
por: Virta, Joni, et al.
Publicado: (2020) -
Blind Source Separation for Compositional Time Series
por: Nordhausen, Klaus, et al.
Publicado: (2020) -
Cálculo tensorial
por: Guillén, Francisco Javier
Publicado: (1957) -
Multi‐Omics Factor Analysis—a framework for unsupervised integration of multi‐omics data sets
por: Argelaguet, Ricard, et al.
Publicado: (2018) -
Visual Parameter Selection for Spatial Blind Source Separation
por: Piccolotto, N., et al.
Publicado: (2022)