Cargando…

3D printing and unicompartmental knee arthroplasty

In suitable patients, unicompartmental knee arthroplasty (UKA) offers a number of advantages compared with total knee arthroplasty. However, the procedure is technically demanding, with a small tolerance for error. Assistive technology has the potential to improve the accuracy of implant positioning...

Descripción completa

Detalles Bibliográficos
Autores principales: Jones, Gareth G., Clarke, Susannah, Jaere, Martin, Cobb, Justin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: British Editorial Society of Bone and Joint Surgery 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5994630/
https://www.ncbi.nlm.nih.gov/pubmed/29951263
http://dx.doi.org/10.1302/2058-5241.3.180001
Descripción
Sumario:In suitable patients, unicompartmental knee arthroplasty (UKA) offers a number of advantages compared with total knee arthroplasty. However, the procedure is technically demanding, with a small tolerance for error. Assistive technology has the potential to improve the accuracy of implant positioning. This review paper describes the concept of detailed UKA planning in 3D, and the 3D printing technology that enables a plan to be delivered intraoperatively using patient-specific instrumentation (PSI). The varying guide designs that enable accurate registration are discussed and described. The system accuracy is reported. Future studies need to ascertain whether accuracy for low-volume surgeons can be delivered in the operating theatre using PSI, and reflected in improved patient reported outcome measures, and lower revision rates. Cite this article: EFORT Open Rev 2018;3 DOI: 10.1302/2058-5241.3.180001