Cargando…
Towards an atomistic understanding of disordered carbon electrode materials
Disordered nanoporous and “hard” carbons are widely used in batteries and supercapacitors, but their atomic structures are poorly determined. Here, we combine machine learning and DFT to obtain new atomistic insight into carbonaceous energy materials. We study structural models of porous and graphit...
Autores principales: | Deringer, Volker L., Merlet, Céline, Hu, Yuchen, Lee, Tae Hoon, Kattirtzi, John A., Pecher, Oliver, Csányi, Gábor, Elliott, Stephen R., Grey, Clare P. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Royal Society of Chemistry
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5994876/ https://www.ncbi.nlm.nih.gov/pubmed/29790508 http://dx.doi.org/10.1039/c8cc01388h |
Ejemplares similares
-
Extracting Crystal Chemistry from Amorphous Carbon Structures
por: Deringer, Volker L., et al.
Publicado: (2017) -
Local Distortions and Dynamics in Hydrated Y-Doped
BaZrO(3)
por: Torayev, Amangeldi, et al.
Publicado: (2020) -
Reactivity of Amorphous Carbon Surfaces: Rationalizing
the Role of Structural Motifs in Functionalization Using Machine Learning
por: Caro, Miguel A., et al.
Publicado: (2018) -
Gaussian Process Regression for Materials and Molecules
por: Deringer, Volker L., et al.
Publicado: (2021) -
A general-purpose machine-learning force field for bulk and nanostructured phosphorus
por: Deringer, Volker L., et al.
Publicado: (2020)