Cargando…
Impact of acute versus prolonged exercise and dehydration on kidney function and injury
Exercise and dehydration may be associated with a compromised kidney function and potential signs of kidney injury. However, the kidney responses to exercise of different durations and hypohydration levels are not yet known. Therefore, we aimed to compare the effects of acute versus prolonged exerci...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5995308/ https://www.ncbi.nlm.nih.gov/pubmed/29890037 http://dx.doi.org/10.14814/phy2.13734 |
_version_ | 1783330594730541056 |
---|---|
author | Bongers, Coen C. W. G. Alsady, Mohammad Nijenhuis, Tom Tulp, Anouk D. M. Eijsvogels, Thijs M. H. Deen, Peter M. T. Hopman, Maria T. E. |
author_facet | Bongers, Coen C. W. G. Alsady, Mohammad Nijenhuis, Tom Tulp, Anouk D. M. Eijsvogels, Thijs M. H. Deen, Peter M. T. Hopman, Maria T. E. |
author_sort | Bongers, Coen C. W. G. |
collection | PubMed |
description | Exercise and dehydration may be associated with a compromised kidney function and potential signs of kidney injury. However, the kidney responses to exercise of different durations and hypohydration levels are not yet known. Therefore, we aimed to compare the effects of acute versus prolonged exercise and dehydration on estimated glomerular filtration rate (eGFR) and kidney injury biomarkers in healthy male adults. A total of 35 subjects (23 ± 3 years) were included and invited for two study visits. Visit 1 consisted of a maximal cycling test. On Visit 2, subjects performed a submaximal exercise test at 80% of maximal heart rate until 3% hypohydration. Blood and urine samples were taken at baseline, after 30 min of exercise (acute effects; low level of hypohydration) and after 150 min of exercise or when 3% hypohydration was achieved (prolonged effects, high level of hypohydration). Urinary outcome parameters were corrected for urinary cystatin C, creatinine, and osmolality. Subjects dehydrated on average 0.6 ± 0.3% and 2.9 ± 0.7% after acute and prolonged exercise, respectively (P < 0.001). The eGFR (cystatin C) did not differ between baseline and acute exercise (118 ± 11 vs. 116 ± 12 mL/min/1.73 m(2), P = 0.12), whereas eGFR (cystatin C) was significantly lower after prolonged exercise (103 ± 16 mL/min/1.73 m(2), P < 0.001). We found no difference in osmolality corrected uKIM1 concentrations after acute and prolonged exercise (P > 0.05), and elevated osmolality corrected uNGAL concentrations after acute and prolonged exercise (all P‐values < 0.05). In conclusion, acute exercise did barely impact on eGFR (cystatin C) and kidney injury biomarkers, whereas prolonged exercise is associated with a decline in eGFR (cystatin C) and increased biomarkers for kidney injury. |
format | Online Article Text |
id | pubmed-5995308 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-59953082018-06-20 Impact of acute versus prolonged exercise and dehydration on kidney function and injury Bongers, Coen C. W. G. Alsady, Mohammad Nijenhuis, Tom Tulp, Anouk D. M. Eijsvogels, Thijs M. H. Deen, Peter M. T. Hopman, Maria T. E. Physiol Rep Original Research Exercise and dehydration may be associated with a compromised kidney function and potential signs of kidney injury. However, the kidney responses to exercise of different durations and hypohydration levels are not yet known. Therefore, we aimed to compare the effects of acute versus prolonged exercise and dehydration on estimated glomerular filtration rate (eGFR) and kidney injury biomarkers in healthy male adults. A total of 35 subjects (23 ± 3 years) were included and invited for two study visits. Visit 1 consisted of a maximal cycling test. On Visit 2, subjects performed a submaximal exercise test at 80% of maximal heart rate until 3% hypohydration. Blood and urine samples were taken at baseline, after 30 min of exercise (acute effects; low level of hypohydration) and after 150 min of exercise or when 3% hypohydration was achieved (prolonged effects, high level of hypohydration). Urinary outcome parameters were corrected for urinary cystatin C, creatinine, and osmolality. Subjects dehydrated on average 0.6 ± 0.3% and 2.9 ± 0.7% after acute and prolonged exercise, respectively (P < 0.001). The eGFR (cystatin C) did not differ between baseline and acute exercise (118 ± 11 vs. 116 ± 12 mL/min/1.73 m(2), P = 0.12), whereas eGFR (cystatin C) was significantly lower after prolonged exercise (103 ± 16 mL/min/1.73 m(2), P < 0.001). We found no difference in osmolality corrected uKIM1 concentrations after acute and prolonged exercise (P > 0.05), and elevated osmolality corrected uNGAL concentrations after acute and prolonged exercise (all P‐values < 0.05). In conclusion, acute exercise did barely impact on eGFR (cystatin C) and kidney injury biomarkers, whereas prolonged exercise is associated with a decline in eGFR (cystatin C) and increased biomarkers for kidney injury. John Wiley and Sons Inc. 2018-06-11 /pmc/articles/PMC5995308/ /pubmed/29890037 http://dx.doi.org/10.14814/phy2.13734 Text en © 2018 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Original Research Bongers, Coen C. W. G. Alsady, Mohammad Nijenhuis, Tom Tulp, Anouk D. M. Eijsvogels, Thijs M. H. Deen, Peter M. T. Hopman, Maria T. E. Impact of acute versus prolonged exercise and dehydration on kidney function and injury |
title | Impact of acute versus prolonged exercise and dehydration on kidney function and injury |
title_full | Impact of acute versus prolonged exercise and dehydration on kidney function and injury |
title_fullStr | Impact of acute versus prolonged exercise and dehydration on kidney function and injury |
title_full_unstemmed | Impact of acute versus prolonged exercise and dehydration on kidney function and injury |
title_short | Impact of acute versus prolonged exercise and dehydration on kidney function and injury |
title_sort | impact of acute versus prolonged exercise and dehydration on kidney function and injury |
topic | Original Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5995308/ https://www.ncbi.nlm.nih.gov/pubmed/29890037 http://dx.doi.org/10.14814/phy2.13734 |
work_keys_str_mv | AT bongerscoencwg impactofacuteversusprolongedexerciseanddehydrationonkidneyfunctionandinjury AT alsadymohammad impactofacuteversusprolongedexerciseanddehydrationonkidneyfunctionandinjury AT nijenhuistom impactofacuteversusprolongedexerciseanddehydrationonkidneyfunctionandinjury AT tulpanoukdm impactofacuteversusprolongedexerciseanddehydrationonkidneyfunctionandinjury AT eijsvogelsthijsmh impactofacuteversusprolongedexerciseanddehydrationonkidneyfunctionandinjury AT deenpetermt impactofacuteversusprolongedexerciseanddehydrationonkidneyfunctionandinjury AT hopmanmariate impactofacuteversusprolongedexerciseanddehydrationonkidneyfunctionandinjury |