Cargando…
Time-varying MVAR algorithms for directed connectivity analysis: Critical comparison in simulations and benchmark EEG data
Human brain function depends on directed interactions between multiple areas that evolve in the subsecond range. Time-varying multivariate autoregressive (tvMVAR) modeling has been proposed as a way to help quantify directed functional connectivity strengths with high temporal resolution. While seve...
Autores principales: | Pagnotta, Mattia F., Plomp, Gijs |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5995381/ https://www.ncbi.nlm.nih.gov/pubmed/29889883 http://dx.doi.org/10.1371/journal.pone.0198846 |
Ejemplares similares
-
Assessing the performance of Granger–Geweke causality: Benchmark dataset and simulation framework
por: Pagnotta, Mattia F., et al.
Publicado: (2018) -
Simulations to benchmark time-varying connectivity methods for fMRI
por: Thompson, William Hedley, et al.
Publicado: (2018) -
Regulation System for the 18 kV/90 Mvar Compensators
por: Burdet, G
Publicado: (2001) -
Brain Synchronization and Multivariate Autoregressive (MVAR) Modeling in Cognitive Neurodynamics
por: Bressler, Steven L., et al.
Publicado: (2022) -
A Time-Varying Connectivity Analysis from Distributed EEG Sources: A Simulation Study
por: Ghumare, Eshwar G., et al.
Publicado: (2018)