Cargando…

Quantifying esophageal motion during free-breathing and breath-hold using fiducial markers in patients with early-stage esophageal cancer

INTRODUCTION: Cardiac toxicity after definitive chemoradiotherapy for esophageal cancer is a critical issue. To reduce irradiation doses to organs at risk, individual internal margins need to be identified and minimized. The purpose of this study was to quantify esophageal motion using fiducial make...

Descripción completa

Detalles Bibliográficos
Autores principales: Doi, Yoshiko, Murakami, Yuji, Imano, Nobuki, Takeuchi, Yuki, Takahashi, Ippei, Nishibuchi, Ikuno, Kimura, Tomoki, Nagata, Yasushi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5995399/
https://www.ncbi.nlm.nih.gov/pubmed/29889910
http://dx.doi.org/10.1371/journal.pone.0198844
Descripción
Sumario:INTRODUCTION: Cardiac toxicity after definitive chemoradiotherapy for esophageal cancer is a critical issue. To reduce irradiation doses to organs at risk, individual internal margins need to be identified and minimized. The purpose of this study was to quantify esophageal motion using fiducial makers based on four-dimensional computed tomography, and to evaluate the inter-CBCT session marker displacement using breath-hold. MATERIALS AND METHODS: Sixteen patients with early stage esophageal cancer, who received endoscopy-guided metallic marker placement for treatment planning, were included; there were 35 markers in total, with 9, 15, and 11 markers in the upper thoracic, middle thoracic, and lower thoracic/esophagogastric junction regions, respectively. We defined fiducial marker motion as motion of the centroidal point of the markers. Respiratory esophageal motion during free-breathing was defined as the amplitude of individual marker motion between the consecutive breathing and end-expiration phases, derived from four-dimensional computed tomography. The inter-CBCT session marker displacement using breath-hold was defined as the amplitudes of marker motion between the first and each cone beam computed tomography image. Marker motion was analyzed in the three regions (upper thoracic, middle thoracic, and lower thoracic/esophagogastric junction) and in three orthogonal directions (right-left; anterior-posterior; and superior-inferior). RESULTS: Respiratory esophageal motion during free-breathing resulted in median absolute maximum amplitudes (interquartile range), in right-left, anterior-posterior, and superior-inferior directions, of 1.7 (1.4) mm, 2.0 (1.5) mm, and 3.6 (4.1) mm, respectively, in the upper thoracic region, 0.8 (1.1) mm, 1.4 (1.2) mm, and 4.8 (3.6) mm, respectively, in the middle thoracic region, and 1.8 (0.8) mm, 1.9 (2.0) mm, and 8.0 (4.5) mm, respectively, in the lower thoracic/esophagogastric region. The inter-CBCT session marker displacement using breath-hold resulted in median absolute maximum amplitudes (interquartile range), in right-left, anterior–posterior, and superior-inferior directions, of 1.3 (1.0) mm, 1.1 (0.7) mm, and 3.3 (1.8) mm, respectively, in the upper thoracic region, 0.7 (0.7) mm, 1.1 (0.4) mm, and 3.4 (1.4) mm, respectively, in the middle thoracic region, and 2.0 (0.8) mm, 2.6 (2.2) mm, and 3.5 (1.8) mm, respectively, in the lower thoracic/esophagogastric region. CONCLUSIONS: During free-breathing, esophageal motion in the superior-inferior direction in all sites was large, compared to the other directions, and amplitudes showed substantial inter-individual variability. The breath-hold technique is feasible for minimizing esophageal displacement during radiotherapy in patients with esophageal cancer.