Cargando…
Observation of Ultrafast Vibrational Energy Transfer in Fibrinogen and Fibrin Fibers
[Image: see text] We study the secondary structure of the blood protein fibrinogen using two-dimensional infrared spectroscopy. With this technique, we identify the amide I′ vibrational modes of the antiparallel β-sheets and turns of fibrinogen. We observe ultrafast energy flow among these amide I′...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical
Society
2018
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5995459/ https://www.ncbi.nlm.nih.gov/pubmed/29709181 http://dx.doi.org/10.1021/acs.jpcb.8b03490 |
Sumario: | [Image: see text] We study the secondary structure of the blood protein fibrinogen using two-dimensional infrared spectroscopy. With this technique, we identify the amide I′ vibrational modes of the antiparallel β-sheets and turns of fibrinogen. We observe ultrafast energy flow among these amide I′ vibrational modes with a time constant of ∼7 ps. This energy transfer time constant does not change significantly upon fibrin fiber formation, indicating that the secondary structure of the fibrinogen monomers remains largely unchanged in the polymerization process. |
---|