Cargando…

Direct Reprogramming of Mouse Fibroblasts into Functional Skeletal Muscle Progenitors

Skeletal muscle harbors quiescent stem cells termed satellite cells and proliferative progenitors termed myoblasts, which play pivotal roles during muscle regeneration. However, current technology does not allow permanent capture of these cell populations in vitro. Here, we show that ectopic express...

Descripción completa

Detalles Bibliográficos
Autores principales: Bar-Nur, Ori, Gerli, Mattia F.M., Di Stefano, Bruno, Almada, Albert E., Galvin, Amy, Coffey, Amy, Huebner, Aaron J., Feige, Peter, Verheul, Cassandra, Cheung, Priscilla, Payzin-Dogru, Duygu, Paisant, Sylvain, Anselmo, Anthony, Sadreyev, Ruslan I., Ott, Harald C., Tajbakhsh, Shahragim, Rudnicki, Michael A., Wagers, Amy J., Hochedlinger, Konrad
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5995754/
https://www.ncbi.nlm.nih.gov/pubmed/29742392
http://dx.doi.org/10.1016/j.stemcr.2018.04.009
_version_ 1783330662654148608
author Bar-Nur, Ori
Gerli, Mattia F.M.
Di Stefano, Bruno
Almada, Albert E.
Galvin, Amy
Coffey, Amy
Huebner, Aaron J.
Feige, Peter
Verheul, Cassandra
Cheung, Priscilla
Payzin-Dogru, Duygu
Paisant, Sylvain
Anselmo, Anthony
Sadreyev, Ruslan I.
Ott, Harald C.
Tajbakhsh, Shahragim
Rudnicki, Michael A.
Wagers, Amy J.
Hochedlinger, Konrad
author_facet Bar-Nur, Ori
Gerli, Mattia F.M.
Di Stefano, Bruno
Almada, Albert E.
Galvin, Amy
Coffey, Amy
Huebner, Aaron J.
Feige, Peter
Verheul, Cassandra
Cheung, Priscilla
Payzin-Dogru, Duygu
Paisant, Sylvain
Anselmo, Anthony
Sadreyev, Ruslan I.
Ott, Harald C.
Tajbakhsh, Shahragim
Rudnicki, Michael A.
Wagers, Amy J.
Hochedlinger, Konrad
author_sort Bar-Nur, Ori
collection PubMed
description Skeletal muscle harbors quiescent stem cells termed satellite cells and proliferative progenitors termed myoblasts, which play pivotal roles during muscle regeneration. However, current technology does not allow permanent capture of these cell populations in vitro. Here, we show that ectopic expression of the myogenic transcription factor MyoD, combined with exposure to small molecules, reprograms mouse fibroblasts into expandable induced myogenic progenitor cells (iMPCs). iMPCs express key skeletal muscle stem and progenitor cell markers including Pax7 and Myf5 and give rise to dystrophin-expressing myofibers upon transplantation in vivo. Notably, a subset of transplanted iMPCs maintain Pax7 expression and sustain serial regenerative responses. Similar to satellite cells, iMPCs originate from Pax7(+) cells and require Pax7 itself for maintenance. Finally, we show that myogenic progenitor cell lines can be established from muscle tissue following small-molecule exposure alone. This study thus reports on a robust approach to derive expandable myogenic stem/progenitor-like cells from multiple cell types.
format Online
Article
Text
id pubmed-5995754
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-59957542018-06-12 Direct Reprogramming of Mouse Fibroblasts into Functional Skeletal Muscle Progenitors Bar-Nur, Ori Gerli, Mattia F.M. Di Stefano, Bruno Almada, Albert E. Galvin, Amy Coffey, Amy Huebner, Aaron J. Feige, Peter Verheul, Cassandra Cheung, Priscilla Payzin-Dogru, Duygu Paisant, Sylvain Anselmo, Anthony Sadreyev, Ruslan I. Ott, Harald C. Tajbakhsh, Shahragim Rudnicki, Michael A. Wagers, Amy J. Hochedlinger, Konrad Stem Cell Reports Article Skeletal muscle harbors quiescent stem cells termed satellite cells and proliferative progenitors termed myoblasts, which play pivotal roles during muscle regeneration. However, current technology does not allow permanent capture of these cell populations in vitro. Here, we show that ectopic expression of the myogenic transcription factor MyoD, combined with exposure to small molecules, reprograms mouse fibroblasts into expandable induced myogenic progenitor cells (iMPCs). iMPCs express key skeletal muscle stem and progenitor cell markers including Pax7 and Myf5 and give rise to dystrophin-expressing myofibers upon transplantation in vivo. Notably, a subset of transplanted iMPCs maintain Pax7 expression and sustain serial regenerative responses. Similar to satellite cells, iMPCs originate from Pax7(+) cells and require Pax7 itself for maintenance. Finally, we show that myogenic progenitor cell lines can be established from muscle tissue following small-molecule exposure alone. This study thus reports on a robust approach to derive expandable myogenic stem/progenitor-like cells from multiple cell types. Elsevier 2018-05-08 /pmc/articles/PMC5995754/ /pubmed/29742392 http://dx.doi.org/10.1016/j.stemcr.2018.04.009 Text en © 2018 The Author(s) http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Article
Bar-Nur, Ori
Gerli, Mattia F.M.
Di Stefano, Bruno
Almada, Albert E.
Galvin, Amy
Coffey, Amy
Huebner, Aaron J.
Feige, Peter
Verheul, Cassandra
Cheung, Priscilla
Payzin-Dogru, Duygu
Paisant, Sylvain
Anselmo, Anthony
Sadreyev, Ruslan I.
Ott, Harald C.
Tajbakhsh, Shahragim
Rudnicki, Michael A.
Wagers, Amy J.
Hochedlinger, Konrad
Direct Reprogramming of Mouse Fibroblasts into Functional Skeletal Muscle Progenitors
title Direct Reprogramming of Mouse Fibroblasts into Functional Skeletal Muscle Progenitors
title_full Direct Reprogramming of Mouse Fibroblasts into Functional Skeletal Muscle Progenitors
title_fullStr Direct Reprogramming of Mouse Fibroblasts into Functional Skeletal Muscle Progenitors
title_full_unstemmed Direct Reprogramming of Mouse Fibroblasts into Functional Skeletal Muscle Progenitors
title_short Direct Reprogramming of Mouse Fibroblasts into Functional Skeletal Muscle Progenitors
title_sort direct reprogramming of mouse fibroblasts into functional skeletal muscle progenitors
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5995754/
https://www.ncbi.nlm.nih.gov/pubmed/29742392
http://dx.doi.org/10.1016/j.stemcr.2018.04.009
work_keys_str_mv AT barnurori directreprogrammingofmousefibroblastsintofunctionalskeletalmuscleprogenitors
AT gerlimattiafm directreprogrammingofmousefibroblastsintofunctionalskeletalmuscleprogenitors
AT distefanobruno directreprogrammingofmousefibroblastsintofunctionalskeletalmuscleprogenitors
AT almadaalberte directreprogrammingofmousefibroblastsintofunctionalskeletalmuscleprogenitors
AT galvinamy directreprogrammingofmousefibroblastsintofunctionalskeletalmuscleprogenitors
AT coffeyamy directreprogrammingofmousefibroblastsintofunctionalskeletalmuscleprogenitors
AT huebneraaronj directreprogrammingofmousefibroblastsintofunctionalskeletalmuscleprogenitors
AT feigepeter directreprogrammingofmousefibroblastsintofunctionalskeletalmuscleprogenitors
AT verheulcassandra directreprogrammingofmousefibroblastsintofunctionalskeletalmuscleprogenitors
AT cheungpriscilla directreprogrammingofmousefibroblastsintofunctionalskeletalmuscleprogenitors
AT payzindogruduygu directreprogrammingofmousefibroblastsintofunctionalskeletalmuscleprogenitors
AT paisantsylvain directreprogrammingofmousefibroblastsintofunctionalskeletalmuscleprogenitors
AT anselmoanthony directreprogrammingofmousefibroblastsintofunctionalskeletalmuscleprogenitors
AT sadreyevruslani directreprogrammingofmousefibroblastsintofunctionalskeletalmuscleprogenitors
AT ottharaldc directreprogrammingofmousefibroblastsintofunctionalskeletalmuscleprogenitors
AT tajbakhshshahragim directreprogrammingofmousefibroblastsintofunctionalskeletalmuscleprogenitors
AT rudnickimichaela directreprogrammingofmousefibroblastsintofunctionalskeletalmuscleprogenitors
AT wagersamyj directreprogrammingofmousefibroblastsintofunctionalskeletalmuscleprogenitors
AT hochedlingerkonrad directreprogrammingofmousefibroblastsintofunctionalskeletalmuscleprogenitors