Cargando…
Candida albicans Cdc15 is essential for mitotic exit and cytokinesis
Candida albicans displays a variety of morphological forms, and the ability to switch forms must be linked with cell cycle control. In budding yeast the Mitotic Exit Network (MEN) acts to drive mitotic exit and signal for cytokinesis and cell separation. However, previous reports on the MEN in C. al...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5995815/ https://www.ncbi.nlm.nih.gov/pubmed/29891974 http://dx.doi.org/10.1038/s41598-018-27157-y |
Sumario: | Candida albicans displays a variety of morphological forms, and the ability to switch forms must be linked with cell cycle control. In budding yeast the Mitotic Exit Network (MEN) acts to drive mitotic exit and signal for cytokinesis and cell separation. However, previous reports on the MEN in C. albicans have raised questions on its role in this organism, with the components analysed to date demonstrating differing levels of importance in the processes of mitotic exit, cytokinesis and cell separation. This work focuses on the role of the Cdc15 kinase in C. albicans and demonstrates that, similar to Saccharomyces cerevisiae, it plays an essential role in signalling for mitotic exit and cytokinesis. Cells depleted of Cdc15 developed into elongated filaments, a common response to cell cycle arrest in C. albicans. These filaments emerged exclusively from large budded cells, contained two nuclear bodies and exhibited a hyper-extended spindle, all characteristic of these cells failing to exit mitosis. Furthermore these filaments displayed a clear cytokinesis defect, and CDC15 over-expression led to aberrant cell separation following hyphal morphogenesis. Together, these results are consistent with Cdc15 playing an essential role in signalling for mitotic exit, cytokinesis and cell separation in C. albicans. |
---|