Cargando…

Finding influential nodes for integration in brain networks using optimal percolation theory

Global integration of information in the brain results from complex interactions of segregated brain networks. Identifying the most influential neuronal populations that efficiently bind these networks is a fundamental problem of systems neuroscience. Here, we apply optimal percolation theory and ph...

Descripción completa

Detalles Bibliográficos
Autores principales: Del Ferraro, Gino, Moreno, Andrea, Min, Byungjoon, Morone, Flaviano, Pérez-Ramírez, Úrsula, Pérez-Cervera, Laura, Parra, Lucas C., Holodny, Andrei, Canals, Santiago, Makse, Hernán A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5995874/
https://www.ncbi.nlm.nih.gov/pubmed/29891915
http://dx.doi.org/10.1038/s41467-018-04718-3
_version_ 1783330692473552896
author Del Ferraro, Gino
Moreno, Andrea
Min, Byungjoon
Morone, Flaviano
Pérez-Ramírez, Úrsula
Pérez-Cervera, Laura
Parra, Lucas C.
Holodny, Andrei
Canals, Santiago
Makse, Hernán A.
author_facet Del Ferraro, Gino
Moreno, Andrea
Min, Byungjoon
Morone, Flaviano
Pérez-Ramírez, Úrsula
Pérez-Cervera, Laura
Parra, Lucas C.
Holodny, Andrei
Canals, Santiago
Makse, Hernán A.
author_sort Del Ferraro, Gino
collection PubMed
description Global integration of information in the brain results from complex interactions of segregated brain networks. Identifying the most influential neuronal populations that efficiently bind these networks is a fundamental problem of systems neuroscience. Here, we apply optimal percolation theory and pharmacogenetic interventions in vivo to predict and subsequently target nodes that are essential for global integration of a memory network in rodents. The theory predicts that integration in the memory network is mediated by a set of low-degree nodes located in the nucleus accumbens. This result is confirmed with pharmacogenetic inactivation of the nucleus accumbens, which eliminates the formation of the memory network, while inactivations of other brain areas leave the network intact. Thus, optimal percolation theory predicts essential nodes in brain networks. This could be used to identify targets of interventions to modulate brain function.
format Online
Article
Text
id pubmed-5995874
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-59958742018-06-13 Finding influential nodes for integration in brain networks using optimal percolation theory Del Ferraro, Gino Moreno, Andrea Min, Byungjoon Morone, Flaviano Pérez-Ramírez, Úrsula Pérez-Cervera, Laura Parra, Lucas C. Holodny, Andrei Canals, Santiago Makse, Hernán A. Nat Commun Article Global integration of information in the brain results from complex interactions of segregated brain networks. Identifying the most influential neuronal populations that efficiently bind these networks is a fundamental problem of systems neuroscience. Here, we apply optimal percolation theory and pharmacogenetic interventions in vivo to predict and subsequently target nodes that are essential for global integration of a memory network in rodents. The theory predicts that integration in the memory network is mediated by a set of low-degree nodes located in the nucleus accumbens. This result is confirmed with pharmacogenetic inactivation of the nucleus accumbens, which eliminates the formation of the memory network, while inactivations of other brain areas leave the network intact. Thus, optimal percolation theory predicts essential nodes in brain networks. This could be used to identify targets of interventions to modulate brain function. Nature Publishing Group UK 2018-06-11 /pmc/articles/PMC5995874/ /pubmed/29891915 http://dx.doi.org/10.1038/s41467-018-04718-3 Text en © The Author(s) 2018 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Del Ferraro, Gino
Moreno, Andrea
Min, Byungjoon
Morone, Flaviano
Pérez-Ramírez, Úrsula
Pérez-Cervera, Laura
Parra, Lucas C.
Holodny, Andrei
Canals, Santiago
Makse, Hernán A.
Finding influential nodes for integration in brain networks using optimal percolation theory
title Finding influential nodes for integration in brain networks using optimal percolation theory
title_full Finding influential nodes for integration in brain networks using optimal percolation theory
title_fullStr Finding influential nodes for integration in brain networks using optimal percolation theory
title_full_unstemmed Finding influential nodes for integration in brain networks using optimal percolation theory
title_short Finding influential nodes for integration in brain networks using optimal percolation theory
title_sort finding influential nodes for integration in brain networks using optimal percolation theory
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5995874/
https://www.ncbi.nlm.nih.gov/pubmed/29891915
http://dx.doi.org/10.1038/s41467-018-04718-3
work_keys_str_mv AT delferrarogino findinginfluentialnodesforintegrationinbrainnetworksusingoptimalpercolationtheory
AT morenoandrea findinginfluentialnodesforintegrationinbrainnetworksusingoptimalpercolationtheory
AT minbyungjoon findinginfluentialnodesforintegrationinbrainnetworksusingoptimalpercolationtheory
AT moroneflaviano findinginfluentialnodesforintegrationinbrainnetworksusingoptimalpercolationtheory
AT perezramirezursula findinginfluentialnodesforintegrationinbrainnetworksusingoptimalpercolationtheory
AT perezcerveralaura findinginfluentialnodesforintegrationinbrainnetworksusingoptimalpercolationtheory
AT parralucasc findinginfluentialnodesforintegrationinbrainnetworksusingoptimalpercolationtheory
AT holodnyandrei findinginfluentialnodesforintegrationinbrainnetworksusingoptimalpercolationtheory
AT canalssantiago findinginfluentialnodesforintegrationinbrainnetworksusingoptimalpercolationtheory
AT maksehernana findinginfluentialnodesforintegrationinbrainnetworksusingoptimalpercolationtheory