Cargando…

Combined effects of body position and sleep status on the cardiorespiratory stability of near-term infants

The purpose of this study was to determine the effects of body position (prone, supine and lateral) together with sleep status (wake and sleep) on the cardiorespiratory stability of near-term infants. A total of 53 infants (gestational age at birth 33.2 ± 3.5 weeks; birth weight 1,682 ± 521 g; gesta...

Descripción completa

Detalles Bibliográficos
Autores principales: Oishi, Yoshihisa, Ohta, Hidenobu, Hirose, Takako, Nakaya, Sachiko, Tsuchiya, Keiji, Nakagawa, Machiko, Kusakawa, Isao, Sato, Toshihiro, Obonai, Toshimasa, Nishida, Hiroshi, Yoda, Hitoshi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5995963/
https://www.ncbi.nlm.nih.gov/pubmed/29891999
http://dx.doi.org/10.1038/s41598-018-27212-8
Descripción
Sumario:The purpose of this study was to determine the effects of body position (prone, supine and lateral) together with sleep status (wake and sleep) on the cardiorespiratory stability of near-term infants. A total of 53 infants (gestational age at birth 33.2 ± 3.5 weeks; birth weight 1,682 ± 521 g; gestational age at recording 38.6 ± 2.1 weeks; weight at recording: 2,273 ± 393 g) were monitored for 24 hours for clinically significant apnea (>15 seconds), bradycardia (<100 bpm), and oxygen desaturation (SpO(2) < 90%) in alternating body positions (prone, supine and lateral) by cardiorespiratory monitors and 3-orthogonal-axis accelerometers. Sleep status of the infants was also continuously monitored by actigraphs. No apnea was observed. During wake, severe bradycardia was most frequently observed in the lateral position while, during sleep, severe bradycardia was most frequently observed in the supine position. Desaturation was most frequently observed in the supine and lateral positions during both wake and sleep. Our study suggests that the cardiorespiratory stability of infants is significantly compromised by both body position and sleep status. During both wake and sleep, prone position induces the most stable cardiorespiratory functions of near-term infants.