Cargando…
Classification-Based Prediction of Effective Connectivity Between Timeseries With a Realistic Cortical Network Model
Effective connectivity measures the pattern of causal interactions between brain regions. Traditionally, these patterns of causality are inferred from brain recordings using either non-parametric, i.e., model-free, or parametric, i.e., model-based, approaches. The latter approaches, when based on bi...
Autores principales: | Olivetti, Emanuele, Benozzo, Danilo, Bím, Jan, Panzeri, Stefano, Avesani, Paolo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5996713/ https://www.ncbi.nlm.nih.gov/pubmed/29922142 http://dx.doi.org/10.3389/fncom.2018.00038 |
Ejemplares similares
-
Supervised Estimation of Granger-Based Causality between Time Series
por: Benozzo, Danilo, et al.
Publicado: (2017) -
Classification of Fixed Point Network Dynamics from Multiple Node Timeseries Data
por: Blaszka, David, et al.
Publicado: (2017) -
Bayesian estimation of directed functional coupling from brain recordings
por: Benozzo, Danilo, et al.
Publicado: (2017) -
Differential Effects of Brain Disorders on Structural and Functional Connectivity
por: Vega-Pons, Sandro, et al.
Publicado: (2017) -
ADHD diagnosis from multiple data sources with batch effects
por: Olivetti, Emanuele, et al.
Publicado: (2012)