Cargando…

Intervolume analysis to achieve four-dimensional optical microangiography for observation of dynamic blood flow

We demonstrate in vivo volumetric optical microangiography at [Formula: see text] by the use of 1.6 MHz Fourier domain mode-locking swept source optical coherence tomography and an effective 36 kHz microelectromechanical system (MEMS) scanner. We propose an intervolume analysis strategy to contrast...

Descripción completa

Detalles Bibliográficos
Autores principales: Wei, Wei, Xu, Jingjiang, Baran, Utku, Song, Shaozhen, Qin, Wan, Qi, Xiaoli, Wang, Ruikang K.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Society of Photo-Optical Instrumentation Engineers 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5996864/
https://www.ncbi.nlm.nih.gov/pubmed/26968387
http://dx.doi.org/10.1117/1.JBO.21.3.036005
Descripción
Sumario:We demonstrate in vivo volumetric optical microangiography at [Formula: see text] by the use of 1.6 MHz Fourier domain mode-locking swept source optical coherence tomography and an effective 36 kHz microelectromechanical system (MEMS) scanner. We propose an intervolume analysis strategy to contrast the dynamic blood flow signal from the static tissue background. The proposed system is demonstrated by imaging cerebral blood flow in mice in vivo. For the first time, imaging speed, sensitivity, and temporal resolution become possible for a direct four-dimensional observation of microcirculations within live body parts.