Cargando…
Modeling Chronic Toxicity: A Comparison of Experimental Variability With (Q)SAR/Read-Across Predictions
This study compares the accuracy of (Q)SAR/read-across predictions with the experimental variability of chronic lowest-observed-adverse-effect levels (LOAELs) from in vivo experiments. We could demonstrate that predictions of the lazy structure-activity relationships (lazar) algorithm within the app...
Autores principales: | Helma, Christoph, Vorgrimmler, David, Gebele, Denis, Gütlein, Martin, Engeli, Barbara, Zarn, Jürg, Schilter, Benoit, Lo Piparo, Elena |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5996880/ https://www.ncbi.nlm.nih.gov/pubmed/29922154 http://dx.doi.org/10.3389/fphar.2018.00413 |
Ejemplares similares
-
lazar: a modular predictive toxicology framework
por: Maunz, Andreas, et al.
Publicado: (2013) -
Nano-Lazar: Read across Predictions for Nanoparticle Toxicities with Calculated and Measured Properties
por: Helma, Christoph, et al.
Publicado: (2017) -
In Silico Toxicology Data Resources to Support Read-Across and (Q)SAR
por: Pawar, Gopal, et al.
Publicado: (2019) -
Innovative Strategies to Develop Chemical Categories Using a Combination of Structural and Toxicological Properties
por: Batke, Monika, et al.
Publicado: (2016) -
Toxic Responses Induced at High Doses May Affect Benchmark Doses
por: Zarn, Jürg A., et al.
Publicado: (2020)