Cargando…
Topological Data Analysis as a Morphometric Method: Using Persistent Homology to Demarcate a Leaf Morphospace
Current morphometric methods that comprehensively measure shape cannot compare the disparate leaf shapes found in seed plants and are sensitive to processing artifacts. We explore the use of persistent homology, a topological method applied as a filtration across simplicial complexes (or more simply...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5996898/ https://www.ncbi.nlm.nih.gov/pubmed/29922307 http://dx.doi.org/10.3389/fpls.2018.00553 |
_version_ | 1783330966495821824 |
---|---|
author | Li, Mao An, Hong Angelovici, Ruthie Bagaza, Clement Batushansky, Albert Clark, Lynn Coneva, Viktoriya Donoghue, Michael J. Edwards, Erika Fajardo, Diego Fang, Hui Frank, Margaret H. Gallaher, Timothy Gebken, Sarah Hill, Theresa Jansky, Shelley Kaur, Baljinder Klahs, Phillip C. Klein, Laura L. Kuraparthy, Vasu Londo, Jason Migicovsky, Zoë Miller, Allison Mohn, Rebekah Myles, Sean Otoni, Wagner C. Pires, J. C. Rieffer, Edmond Schmerler, Sam Spriggs, Elizabeth Topp, Christopher N. Van Deynze, Allen Zhang, Kuang Zhu, Linglong Zink, Braden M. Chitwood, Daniel H. |
author_facet | Li, Mao An, Hong Angelovici, Ruthie Bagaza, Clement Batushansky, Albert Clark, Lynn Coneva, Viktoriya Donoghue, Michael J. Edwards, Erika Fajardo, Diego Fang, Hui Frank, Margaret H. Gallaher, Timothy Gebken, Sarah Hill, Theresa Jansky, Shelley Kaur, Baljinder Klahs, Phillip C. Klein, Laura L. Kuraparthy, Vasu Londo, Jason Migicovsky, Zoë Miller, Allison Mohn, Rebekah Myles, Sean Otoni, Wagner C. Pires, J. C. Rieffer, Edmond Schmerler, Sam Spriggs, Elizabeth Topp, Christopher N. Van Deynze, Allen Zhang, Kuang Zhu, Linglong Zink, Braden M. Chitwood, Daniel H. |
author_sort | Li, Mao |
collection | PubMed |
description | Current morphometric methods that comprehensively measure shape cannot compare the disparate leaf shapes found in seed plants and are sensitive to processing artifacts. We explore the use of persistent homology, a topological method applied as a filtration across simplicial complexes (or more simply, a method to measure topological features of spaces across different spatial resolutions), to overcome these limitations. The described method isolates subsets of shape features and measures the spatial relationship of neighboring pixel densities in a shape. We apply the method to the analysis of 182,707 leaves, both published and unpublished, representing 141 plant families collected from 75 sites throughout the world. By measuring leaves from throughout the seed plants using persistent homology, a defined morphospace comparing all leaves is demarcated. Clear differences in shape between major phylogenetic groups are detected and estimates of leaf shape diversity within plant families are made. The approach predicts plant family above chance. The application of a persistent homology method, using topological features, to measure leaf shape allows for a unified morphometric framework to measure plant form, including shapes, textures, patterns, and branching architectures. |
format | Online Article Text |
id | pubmed-5996898 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-59968982018-06-19 Topological Data Analysis as a Morphometric Method: Using Persistent Homology to Demarcate a Leaf Morphospace Li, Mao An, Hong Angelovici, Ruthie Bagaza, Clement Batushansky, Albert Clark, Lynn Coneva, Viktoriya Donoghue, Michael J. Edwards, Erika Fajardo, Diego Fang, Hui Frank, Margaret H. Gallaher, Timothy Gebken, Sarah Hill, Theresa Jansky, Shelley Kaur, Baljinder Klahs, Phillip C. Klein, Laura L. Kuraparthy, Vasu Londo, Jason Migicovsky, Zoë Miller, Allison Mohn, Rebekah Myles, Sean Otoni, Wagner C. Pires, J. C. Rieffer, Edmond Schmerler, Sam Spriggs, Elizabeth Topp, Christopher N. Van Deynze, Allen Zhang, Kuang Zhu, Linglong Zink, Braden M. Chitwood, Daniel H. Front Plant Sci Plant Science Current morphometric methods that comprehensively measure shape cannot compare the disparate leaf shapes found in seed plants and are sensitive to processing artifacts. We explore the use of persistent homology, a topological method applied as a filtration across simplicial complexes (or more simply, a method to measure topological features of spaces across different spatial resolutions), to overcome these limitations. The described method isolates subsets of shape features and measures the spatial relationship of neighboring pixel densities in a shape. We apply the method to the analysis of 182,707 leaves, both published and unpublished, representing 141 plant families collected from 75 sites throughout the world. By measuring leaves from throughout the seed plants using persistent homology, a defined morphospace comparing all leaves is demarcated. Clear differences in shape between major phylogenetic groups are detected and estimates of leaf shape diversity within plant families are made. The approach predicts plant family above chance. The application of a persistent homology method, using topological features, to measure leaf shape allows for a unified morphometric framework to measure plant form, including shapes, textures, patterns, and branching architectures. Frontiers Media S.A. 2018-04-25 /pmc/articles/PMC5996898/ /pubmed/29922307 http://dx.doi.org/10.3389/fpls.2018.00553 Text en Copyright © 2018 Li, An, Angelovici, Bagaza, Batushansky, Clark, Coneva, Donoghue, Edwards, Fajardo, Fang, Frank, Gallaher, Gebken, Hill, Jansky, Kaur, Klahs, Klein, Kuraparthy, Londo, Migicovsky, Miller, Mohn, Myles, Otoni, Pires, Rieffer, Schmerler, Spriggs, Topp, Van Deynze, Zhang, Zhu, Zink and Chitwood. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Plant Science Li, Mao An, Hong Angelovici, Ruthie Bagaza, Clement Batushansky, Albert Clark, Lynn Coneva, Viktoriya Donoghue, Michael J. Edwards, Erika Fajardo, Diego Fang, Hui Frank, Margaret H. Gallaher, Timothy Gebken, Sarah Hill, Theresa Jansky, Shelley Kaur, Baljinder Klahs, Phillip C. Klein, Laura L. Kuraparthy, Vasu Londo, Jason Migicovsky, Zoë Miller, Allison Mohn, Rebekah Myles, Sean Otoni, Wagner C. Pires, J. C. Rieffer, Edmond Schmerler, Sam Spriggs, Elizabeth Topp, Christopher N. Van Deynze, Allen Zhang, Kuang Zhu, Linglong Zink, Braden M. Chitwood, Daniel H. Topological Data Analysis as a Morphometric Method: Using Persistent Homology to Demarcate a Leaf Morphospace |
title | Topological Data Analysis as a Morphometric Method: Using Persistent Homology to Demarcate a Leaf Morphospace |
title_full | Topological Data Analysis as a Morphometric Method: Using Persistent Homology to Demarcate a Leaf Morphospace |
title_fullStr | Topological Data Analysis as a Morphometric Method: Using Persistent Homology to Demarcate a Leaf Morphospace |
title_full_unstemmed | Topological Data Analysis as a Morphometric Method: Using Persistent Homology to Demarcate a Leaf Morphospace |
title_short | Topological Data Analysis as a Morphometric Method: Using Persistent Homology to Demarcate a Leaf Morphospace |
title_sort | topological data analysis as a morphometric method: using persistent homology to demarcate a leaf morphospace |
topic | Plant Science |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5996898/ https://www.ncbi.nlm.nih.gov/pubmed/29922307 http://dx.doi.org/10.3389/fpls.2018.00553 |
work_keys_str_mv | AT limao topologicaldataanalysisasamorphometricmethodusingpersistenthomologytodemarcatealeafmorphospace AT anhong topologicaldataanalysisasamorphometricmethodusingpersistenthomologytodemarcatealeafmorphospace AT angeloviciruthie topologicaldataanalysisasamorphometricmethodusingpersistenthomologytodemarcatealeafmorphospace AT bagazaclement topologicaldataanalysisasamorphometricmethodusingpersistenthomologytodemarcatealeafmorphospace AT batushanskyalbert topologicaldataanalysisasamorphometricmethodusingpersistenthomologytodemarcatealeafmorphospace AT clarklynn topologicaldataanalysisasamorphometricmethodusingpersistenthomologytodemarcatealeafmorphospace AT conevaviktoriya topologicaldataanalysisasamorphometricmethodusingpersistenthomologytodemarcatealeafmorphospace AT donoghuemichaelj topologicaldataanalysisasamorphometricmethodusingpersistenthomologytodemarcatealeafmorphospace AT edwardserika topologicaldataanalysisasamorphometricmethodusingpersistenthomologytodemarcatealeafmorphospace AT fajardodiego topologicaldataanalysisasamorphometricmethodusingpersistenthomologytodemarcatealeafmorphospace AT fanghui topologicaldataanalysisasamorphometricmethodusingpersistenthomologytodemarcatealeafmorphospace AT frankmargareth topologicaldataanalysisasamorphometricmethodusingpersistenthomologytodemarcatealeafmorphospace AT gallahertimothy topologicaldataanalysisasamorphometricmethodusingpersistenthomologytodemarcatealeafmorphospace AT gebkensarah topologicaldataanalysisasamorphometricmethodusingpersistenthomologytodemarcatealeafmorphospace AT hilltheresa topologicaldataanalysisasamorphometricmethodusingpersistenthomologytodemarcatealeafmorphospace AT janskyshelley topologicaldataanalysisasamorphometricmethodusingpersistenthomologytodemarcatealeafmorphospace AT kaurbaljinder topologicaldataanalysisasamorphometricmethodusingpersistenthomologytodemarcatealeafmorphospace AT klahsphillipc topologicaldataanalysisasamorphometricmethodusingpersistenthomologytodemarcatealeafmorphospace AT kleinlaural topologicaldataanalysisasamorphometricmethodusingpersistenthomologytodemarcatealeafmorphospace AT kuraparthyvasu topologicaldataanalysisasamorphometricmethodusingpersistenthomologytodemarcatealeafmorphospace AT londojason topologicaldataanalysisasamorphometricmethodusingpersistenthomologytodemarcatealeafmorphospace AT migicovskyzoe topologicaldataanalysisasamorphometricmethodusingpersistenthomologytodemarcatealeafmorphospace AT millerallison topologicaldataanalysisasamorphometricmethodusingpersistenthomologytodemarcatealeafmorphospace AT mohnrebekah topologicaldataanalysisasamorphometricmethodusingpersistenthomologytodemarcatealeafmorphospace AT mylessean topologicaldataanalysisasamorphometricmethodusingpersistenthomologytodemarcatealeafmorphospace AT otoniwagnerc topologicaldataanalysisasamorphometricmethodusingpersistenthomologytodemarcatealeafmorphospace AT piresjc topologicaldataanalysisasamorphometricmethodusingpersistenthomologytodemarcatealeafmorphospace AT riefferedmond topologicaldataanalysisasamorphometricmethodusingpersistenthomologytodemarcatealeafmorphospace AT schmerlersam topologicaldataanalysisasamorphometricmethodusingpersistenthomologytodemarcatealeafmorphospace AT spriggselizabeth topologicaldataanalysisasamorphometricmethodusingpersistenthomologytodemarcatealeafmorphospace AT toppchristophern topologicaldataanalysisasamorphometricmethodusingpersistenthomologytodemarcatealeafmorphospace AT vandeynzeallen topologicaldataanalysisasamorphometricmethodusingpersistenthomologytodemarcatealeafmorphospace AT zhangkuang topologicaldataanalysisasamorphometricmethodusingpersistenthomologytodemarcatealeafmorphospace AT zhulinglong topologicaldataanalysisasamorphometricmethodusingpersistenthomologytodemarcatealeafmorphospace AT zinkbradenm topologicaldataanalysisasamorphometricmethodusingpersistenthomologytodemarcatealeafmorphospace AT chitwooddanielh topologicaldataanalysisasamorphometricmethodusingpersistenthomologytodemarcatealeafmorphospace |