Cargando…

Data-Driven Differential Diagnosis of Dementia Using Multiclass Disease State Index Classifier

Clinical decision support systems (CDSSs) hold potential for the differential diagnosis of neurodegenerative diseases. We developed a novel CDSS, the PredictND tool, designed for differential diagnosis of different types of dementia. It combines information obtained from multiple diagnostic tests su...

Descripción completa

Detalles Bibliográficos
Autores principales: Tolonen, Antti, Rhodius-Meester, Hanneke F. M., Bruun, Marie, Koikkalainen, Juha, Barkhof, Frederik, Lemstra, Afina W., Koene, Teddy, Scheltens, Philip, Teunissen, Charlotte E., Tong, Tong, Guerrero, Ricardo, Schuh, Andreas, Ledig, Christian, Baroni, Marta, Rueckert, Daniel, Soininen, Hilkka, Remes, Anne M., Waldemar, Gunhild, Hasselbalch, Steen G., Mecocci, Patrizia, van der Flier, Wiesje M., Lötjönen, Jyrki
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5996907/
https://www.ncbi.nlm.nih.gov/pubmed/29922145
http://dx.doi.org/10.3389/fnagi.2018.00111
_version_ 1783330969513623552
author Tolonen, Antti
Rhodius-Meester, Hanneke F. M.
Bruun, Marie
Koikkalainen, Juha
Barkhof, Frederik
Lemstra, Afina W.
Koene, Teddy
Scheltens, Philip
Teunissen, Charlotte E.
Tong, Tong
Guerrero, Ricardo
Schuh, Andreas
Ledig, Christian
Baroni, Marta
Rueckert, Daniel
Soininen, Hilkka
Remes, Anne M.
Waldemar, Gunhild
Hasselbalch, Steen G.
Mecocci, Patrizia
van der Flier, Wiesje M.
Lötjönen, Jyrki
author_facet Tolonen, Antti
Rhodius-Meester, Hanneke F. M.
Bruun, Marie
Koikkalainen, Juha
Barkhof, Frederik
Lemstra, Afina W.
Koene, Teddy
Scheltens, Philip
Teunissen, Charlotte E.
Tong, Tong
Guerrero, Ricardo
Schuh, Andreas
Ledig, Christian
Baroni, Marta
Rueckert, Daniel
Soininen, Hilkka
Remes, Anne M.
Waldemar, Gunhild
Hasselbalch, Steen G.
Mecocci, Patrizia
van der Flier, Wiesje M.
Lötjönen, Jyrki
author_sort Tolonen, Antti
collection PubMed
description Clinical decision support systems (CDSSs) hold potential for the differential diagnosis of neurodegenerative diseases. We developed a novel CDSS, the PredictND tool, designed for differential diagnosis of different types of dementia. It combines information obtained from multiple diagnostic tests such as neuropsychological tests, MRI and cerebrospinal fluid samples. Here we evaluated how the classifier used in it performs in differentiating between controls with subjective cognitive decline, dementia due to Alzheimer’s disease, vascular dementia, frontotemporal lobar degeneration and dementia with Lewy bodies. We used the multiclass Disease State Index classifier, which is the classifier used by the PredictND tool, to differentiate between controls and patients with the four different types of dementia. The multiclass Disease State Index classifier is an extension of a previously developed two-class Disease State Index classifier. As the two-class Disease State Index classifier, the multiclass Disease State Index classifier also offers a visualization of its decision making process, which makes it especially suitable for medical decision support where interpretability of the results is highly important. A subset of the Amsterdam Dementia cohort, consisting of 504 patients (age 65 ± 8 years, 44% females) with data from neuropsychological tests, cerebrospinal fluid samples and both automatic and visual MRI quantifications, was used for the evaluation. The Disease State Index classifier was highly accurate in separating the five classes from each other (balanced accuracy 82.3%). Accuracy was highest for vascular dementia and lowest for dementia with Lewy bodies. For the 50% of patients for which the classifier was most confident on the classification the balanced accuracy was 93.6%. Data-driven CDSSs can be of aid in differential diagnosis in clinical practice. The decision support system tested in this study was highly accurate in separating the different dementias and controls from each other. In addition to the predicted class, it also provides a confidence measure for the classification.
format Online
Article
Text
id pubmed-5996907
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-59969072018-06-19 Data-Driven Differential Diagnosis of Dementia Using Multiclass Disease State Index Classifier Tolonen, Antti Rhodius-Meester, Hanneke F. M. Bruun, Marie Koikkalainen, Juha Barkhof, Frederik Lemstra, Afina W. Koene, Teddy Scheltens, Philip Teunissen, Charlotte E. Tong, Tong Guerrero, Ricardo Schuh, Andreas Ledig, Christian Baroni, Marta Rueckert, Daniel Soininen, Hilkka Remes, Anne M. Waldemar, Gunhild Hasselbalch, Steen G. Mecocci, Patrizia van der Flier, Wiesje M. Lötjönen, Jyrki Front Aging Neurosci Neuroscience Clinical decision support systems (CDSSs) hold potential for the differential diagnosis of neurodegenerative diseases. We developed a novel CDSS, the PredictND tool, designed for differential diagnosis of different types of dementia. It combines information obtained from multiple diagnostic tests such as neuropsychological tests, MRI and cerebrospinal fluid samples. Here we evaluated how the classifier used in it performs in differentiating between controls with subjective cognitive decline, dementia due to Alzheimer’s disease, vascular dementia, frontotemporal lobar degeneration and dementia with Lewy bodies. We used the multiclass Disease State Index classifier, which is the classifier used by the PredictND tool, to differentiate between controls and patients with the four different types of dementia. The multiclass Disease State Index classifier is an extension of a previously developed two-class Disease State Index classifier. As the two-class Disease State Index classifier, the multiclass Disease State Index classifier also offers a visualization of its decision making process, which makes it especially suitable for medical decision support where interpretability of the results is highly important. A subset of the Amsterdam Dementia cohort, consisting of 504 patients (age 65 ± 8 years, 44% females) with data from neuropsychological tests, cerebrospinal fluid samples and both automatic and visual MRI quantifications, was used for the evaluation. The Disease State Index classifier was highly accurate in separating the five classes from each other (balanced accuracy 82.3%). Accuracy was highest for vascular dementia and lowest for dementia with Lewy bodies. For the 50% of patients for which the classifier was most confident on the classification the balanced accuracy was 93.6%. Data-driven CDSSs can be of aid in differential diagnosis in clinical practice. The decision support system tested in this study was highly accurate in separating the different dementias and controls from each other. In addition to the predicted class, it also provides a confidence measure for the classification. Frontiers Media S.A. 2018-04-25 /pmc/articles/PMC5996907/ /pubmed/29922145 http://dx.doi.org/10.3389/fnagi.2018.00111 Text en Copyright © 2018 Tolonen, Rhodius-Meester, Bruun, Koikkalainen, Barkhof, Lemstra, Koene, Scheltens, Teunissen, Tong, Guerrero, Schuh, Ledig, Baroni, Rueckert, Soininen, Remes, Waldemar, Hasselbalch, Mecocci, van der Flier and Lötjönen. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Neuroscience
Tolonen, Antti
Rhodius-Meester, Hanneke F. M.
Bruun, Marie
Koikkalainen, Juha
Barkhof, Frederik
Lemstra, Afina W.
Koene, Teddy
Scheltens, Philip
Teunissen, Charlotte E.
Tong, Tong
Guerrero, Ricardo
Schuh, Andreas
Ledig, Christian
Baroni, Marta
Rueckert, Daniel
Soininen, Hilkka
Remes, Anne M.
Waldemar, Gunhild
Hasselbalch, Steen G.
Mecocci, Patrizia
van der Flier, Wiesje M.
Lötjönen, Jyrki
Data-Driven Differential Diagnosis of Dementia Using Multiclass Disease State Index Classifier
title Data-Driven Differential Diagnosis of Dementia Using Multiclass Disease State Index Classifier
title_full Data-Driven Differential Diagnosis of Dementia Using Multiclass Disease State Index Classifier
title_fullStr Data-Driven Differential Diagnosis of Dementia Using Multiclass Disease State Index Classifier
title_full_unstemmed Data-Driven Differential Diagnosis of Dementia Using Multiclass Disease State Index Classifier
title_short Data-Driven Differential Diagnosis of Dementia Using Multiclass Disease State Index Classifier
title_sort data-driven differential diagnosis of dementia using multiclass disease state index classifier
topic Neuroscience
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5996907/
https://www.ncbi.nlm.nih.gov/pubmed/29922145
http://dx.doi.org/10.3389/fnagi.2018.00111
work_keys_str_mv AT tolonenantti datadrivendifferentialdiagnosisofdementiausingmulticlassdiseasestateindexclassifier
AT rhodiusmeesterhannekefm datadrivendifferentialdiagnosisofdementiausingmulticlassdiseasestateindexclassifier
AT bruunmarie datadrivendifferentialdiagnosisofdementiausingmulticlassdiseasestateindexclassifier
AT koikkalainenjuha datadrivendifferentialdiagnosisofdementiausingmulticlassdiseasestateindexclassifier
AT barkhoffrederik datadrivendifferentialdiagnosisofdementiausingmulticlassdiseasestateindexclassifier
AT lemstraafinaw datadrivendifferentialdiagnosisofdementiausingmulticlassdiseasestateindexclassifier
AT koeneteddy datadrivendifferentialdiagnosisofdementiausingmulticlassdiseasestateindexclassifier
AT scheltensphilip datadrivendifferentialdiagnosisofdementiausingmulticlassdiseasestateindexclassifier
AT teunissencharlottee datadrivendifferentialdiagnosisofdementiausingmulticlassdiseasestateindexclassifier
AT tongtong datadrivendifferentialdiagnosisofdementiausingmulticlassdiseasestateindexclassifier
AT guerreroricardo datadrivendifferentialdiagnosisofdementiausingmulticlassdiseasestateindexclassifier
AT schuhandreas datadrivendifferentialdiagnosisofdementiausingmulticlassdiseasestateindexclassifier
AT ledigchristian datadrivendifferentialdiagnosisofdementiausingmulticlassdiseasestateindexclassifier
AT baronimarta datadrivendifferentialdiagnosisofdementiausingmulticlassdiseasestateindexclassifier
AT rueckertdaniel datadrivendifferentialdiagnosisofdementiausingmulticlassdiseasestateindexclassifier
AT soininenhilkka datadrivendifferentialdiagnosisofdementiausingmulticlassdiseasestateindexclassifier
AT remesannem datadrivendifferentialdiagnosisofdementiausingmulticlassdiseasestateindexclassifier
AT waldemargunhild datadrivendifferentialdiagnosisofdementiausingmulticlassdiseasestateindexclassifier
AT hasselbalchsteeng datadrivendifferentialdiagnosisofdementiausingmulticlassdiseasestateindexclassifier
AT mecoccipatrizia datadrivendifferentialdiagnosisofdementiausingmulticlassdiseasestateindexclassifier
AT vanderflierwiesjem datadrivendifferentialdiagnosisofdementiausingmulticlassdiseasestateindexclassifier
AT lotjonenjyrki datadrivendifferentialdiagnosisofdementiausingmulticlassdiseasestateindexclassifier