Cargando…
Data-Driven Differential Diagnosis of Dementia Using Multiclass Disease State Index Classifier
Clinical decision support systems (CDSSs) hold potential for the differential diagnosis of neurodegenerative diseases. We developed a novel CDSS, the PredictND tool, designed for differential diagnosis of different types of dementia. It combines information obtained from multiple diagnostic tests su...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5996907/ https://www.ncbi.nlm.nih.gov/pubmed/29922145 http://dx.doi.org/10.3389/fnagi.2018.00111 |
_version_ | 1783330969513623552 |
---|---|
author | Tolonen, Antti Rhodius-Meester, Hanneke F. M. Bruun, Marie Koikkalainen, Juha Barkhof, Frederik Lemstra, Afina W. Koene, Teddy Scheltens, Philip Teunissen, Charlotte E. Tong, Tong Guerrero, Ricardo Schuh, Andreas Ledig, Christian Baroni, Marta Rueckert, Daniel Soininen, Hilkka Remes, Anne M. Waldemar, Gunhild Hasselbalch, Steen G. Mecocci, Patrizia van der Flier, Wiesje M. Lötjönen, Jyrki |
author_facet | Tolonen, Antti Rhodius-Meester, Hanneke F. M. Bruun, Marie Koikkalainen, Juha Barkhof, Frederik Lemstra, Afina W. Koene, Teddy Scheltens, Philip Teunissen, Charlotte E. Tong, Tong Guerrero, Ricardo Schuh, Andreas Ledig, Christian Baroni, Marta Rueckert, Daniel Soininen, Hilkka Remes, Anne M. Waldemar, Gunhild Hasselbalch, Steen G. Mecocci, Patrizia van der Flier, Wiesje M. Lötjönen, Jyrki |
author_sort | Tolonen, Antti |
collection | PubMed |
description | Clinical decision support systems (CDSSs) hold potential for the differential diagnosis of neurodegenerative diseases. We developed a novel CDSS, the PredictND tool, designed for differential diagnosis of different types of dementia. It combines information obtained from multiple diagnostic tests such as neuropsychological tests, MRI and cerebrospinal fluid samples. Here we evaluated how the classifier used in it performs in differentiating between controls with subjective cognitive decline, dementia due to Alzheimer’s disease, vascular dementia, frontotemporal lobar degeneration and dementia with Lewy bodies. We used the multiclass Disease State Index classifier, which is the classifier used by the PredictND tool, to differentiate between controls and patients with the four different types of dementia. The multiclass Disease State Index classifier is an extension of a previously developed two-class Disease State Index classifier. As the two-class Disease State Index classifier, the multiclass Disease State Index classifier also offers a visualization of its decision making process, which makes it especially suitable for medical decision support where interpretability of the results is highly important. A subset of the Amsterdam Dementia cohort, consisting of 504 patients (age 65 ± 8 years, 44% females) with data from neuropsychological tests, cerebrospinal fluid samples and both automatic and visual MRI quantifications, was used for the evaluation. The Disease State Index classifier was highly accurate in separating the five classes from each other (balanced accuracy 82.3%). Accuracy was highest for vascular dementia and lowest for dementia with Lewy bodies. For the 50% of patients for which the classifier was most confident on the classification the balanced accuracy was 93.6%. Data-driven CDSSs can be of aid in differential diagnosis in clinical practice. The decision support system tested in this study was highly accurate in separating the different dementias and controls from each other. In addition to the predicted class, it also provides a confidence measure for the classification. |
format | Online Article Text |
id | pubmed-5996907 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-59969072018-06-19 Data-Driven Differential Diagnosis of Dementia Using Multiclass Disease State Index Classifier Tolonen, Antti Rhodius-Meester, Hanneke F. M. Bruun, Marie Koikkalainen, Juha Barkhof, Frederik Lemstra, Afina W. Koene, Teddy Scheltens, Philip Teunissen, Charlotte E. Tong, Tong Guerrero, Ricardo Schuh, Andreas Ledig, Christian Baroni, Marta Rueckert, Daniel Soininen, Hilkka Remes, Anne M. Waldemar, Gunhild Hasselbalch, Steen G. Mecocci, Patrizia van der Flier, Wiesje M. Lötjönen, Jyrki Front Aging Neurosci Neuroscience Clinical decision support systems (CDSSs) hold potential for the differential diagnosis of neurodegenerative diseases. We developed a novel CDSS, the PredictND tool, designed for differential diagnosis of different types of dementia. It combines information obtained from multiple diagnostic tests such as neuropsychological tests, MRI and cerebrospinal fluid samples. Here we evaluated how the classifier used in it performs in differentiating between controls with subjective cognitive decline, dementia due to Alzheimer’s disease, vascular dementia, frontotemporal lobar degeneration and dementia with Lewy bodies. We used the multiclass Disease State Index classifier, which is the classifier used by the PredictND tool, to differentiate between controls and patients with the four different types of dementia. The multiclass Disease State Index classifier is an extension of a previously developed two-class Disease State Index classifier. As the two-class Disease State Index classifier, the multiclass Disease State Index classifier also offers a visualization of its decision making process, which makes it especially suitable for medical decision support where interpretability of the results is highly important. A subset of the Amsterdam Dementia cohort, consisting of 504 patients (age 65 ± 8 years, 44% females) with data from neuropsychological tests, cerebrospinal fluid samples and both automatic and visual MRI quantifications, was used for the evaluation. The Disease State Index classifier was highly accurate in separating the five classes from each other (balanced accuracy 82.3%). Accuracy was highest for vascular dementia and lowest for dementia with Lewy bodies. For the 50% of patients for which the classifier was most confident on the classification the balanced accuracy was 93.6%. Data-driven CDSSs can be of aid in differential diagnosis in clinical practice. The decision support system tested in this study was highly accurate in separating the different dementias and controls from each other. In addition to the predicted class, it also provides a confidence measure for the classification. Frontiers Media S.A. 2018-04-25 /pmc/articles/PMC5996907/ /pubmed/29922145 http://dx.doi.org/10.3389/fnagi.2018.00111 Text en Copyright © 2018 Tolonen, Rhodius-Meester, Bruun, Koikkalainen, Barkhof, Lemstra, Koene, Scheltens, Teunissen, Tong, Guerrero, Schuh, Ledig, Baroni, Rueckert, Soininen, Remes, Waldemar, Hasselbalch, Mecocci, van der Flier and Lötjönen. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Neuroscience Tolonen, Antti Rhodius-Meester, Hanneke F. M. Bruun, Marie Koikkalainen, Juha Barkhof, Frederik Lemstra, Afina W. Koene, Teddy Scheltens, Philip Teunissen, Charlotte E. Tong, Tong Guerrero, Ricardo Schuh, Andreas Ledig, Christian Baroni, Marta Rueckert, Daniel Soininen, Hilkka Remes, Anne M. Waldemar, Gunhild Hasselbalch, Steen G. Mecocci, Patrizia van der Flier, Wiesje M. Lötjönen, Jyrki Data-Driven Differential Diagnosis of Dementia Using Multiclass Disease State Index Classifier |
title | Data-Driven Differential Diagnosis of Dementia Using Multiclass Disease State Index Classifier |
title_full | Data-Driven Differential Diagnosis of Dementia Using Multiclass Disease State Index Classifier |
title_fullStr | Data-Driven Differential Diagnosis of Dementia Using Multiclass Disease State Index Classifier |
title_full_unstemmed | Data-Driven Differential Diagnosis of Dementia Using Multiclass Disease State Index Classifier |
title_short | Data-Driven Differential Diagnosis of Dementia Using Multiclass Disease State Index Classifier |
title_sort | data-driven differential diagnosis of dementia using multiclass disease state index classifier |
topic | Neuroscience |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5996907/ https://www.ncbi.nlm.nih.gov/pubmed/29922145 http://dx.doi.org/10.3389/fnagi.2018.00111 |
work_keys_str_mv | AT tolonenantti datadrivendifferentialdiagnosisofdementiausingmulticlassdiseasestateindexclassifier AT rhodiusmeesterhannekefm datadrivendifferentialdiagnosisofdementiausingmulticlassdiseasestateindexclassifier AT bruunmarie datadrivendifferentialdiagnosisofdementiausingmulticlassdiseasestateindexclassifier AT koikkalainenjuha datadrivendifferentialdiagnosisofdementiausingmulticlassdiseasestateindexclassifier AT barkhoffrederik datadrivendifferentialdiagnosisofdementiausingmulticlassdiseasestateindexclassifier AT lemstraafinaw datadrivendifferentialdiagnosisofdementiausingmulticlassdiseasestateindexclassifier AT koeneteddy datadrivendifferentialdiagnosisofdementiausingmulticlassdiseasestateindexclassifier AT scheltensphilip datadrivendifferentialdiagnosisofdementiausingmulticlassdiseasestateindexclassifier AT teunissencharlottee datadrivendifferentialdiagnosisofdementiausingmulticlassdiseasestateindexclassifier AT tongtong datadrivendifferentialdiagnosisofdementiausingmulticlassdiseasestateindexclassifier AT guerreroricardo datadrivendifferentialdiagnosisofdementiausingmulticlassdiseasestateindexclassifier AT schuhandreas datadrivendifferentialdiagnosisofdementiausingmulticlassdiseasestateindexclassifier AT ledigchristian datadrivendifferentialdiagnosisofdementiausingmulticlassdiseasestateindexclassifier AT baronimarta datadrivendifferentialdiagnosisofdementiausingmulticlassdiseasestateindexclassifier AT rueckertdaniel datadrivendifferentialdiagnosisofdementiausingmulticlassdiseasestateindexclassifier AT soininenhilkka datadrivendifferentialdiagnosisofdementiausingmulticlassdiseasestateindexclassifier AT remesannem datadrivendifferentialdiagnosisofdementiausingmulticlassdiseasestateindexclassifier AT waldemargunhild datadrivendifferentialdiagnosisofdementiausingmulticlassdiseasestateindexclassifier AT hasselbalchsteeng datadrivendifferentialdiagnosisofdementiausingmulticlassdiseasestateindexclassifier AT mecoccipatrizia datadrivendifferentialdiagnosisofdementiausingmulticlassdiseasestateindexclassifier AT vanderflierwiesjem datadrivendifferentialdiagnosisofdementiausingmulticlassdiseasestateindexclassifier AT lotjonenjyrki datadrivendifferentialdiagnosisofdementiausingmulticlassdiseasestateindexclassifier |