Cargando…
A new method for predicting essential proteins based on participation degree in protein complex and subgraph density
Essential proteins are crucial to living cells. Identification of essential proteins from protein-protein interaction (PPI) networks can be applied to pathway analysis and function prediction, furthermore, it can contribute to disease diagnosis and drug design. There have been some experimental and...
Autores principales: | Lei, Xiujuan, Yang, Xiaoqin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5997351/ https://www.ncbi.nlm.nih.gov/pubmed/29894517 http://dx.doi.org/10.1371/journal.pone.0198998 |
Ejemplares similares
-
Densest subgraph-based methods for protein-protein interaction hot spot prediction
por: Li, Ruiming, et al.
Publicado: (2022) -
Protein complex prediction based on k-connected subgraphs in protein interaction network
por: Habibi, Mahnaz, et al.
Publicado: (2010) -
Protein complex prediction via dense subgraphs and false positive analysis
por: Hernandez, Cecilia, et al.
Publicado: (2017) -
Using contrast patterns between true complexes and random subgraphs in PPI networks to predict unknown protein complexes
por: Liu, Quanzhong, et al.
Publicado: (2016) -
Mining functional subgraphs from cancer protein-protein interaction networks
por: Shen, Ru, et al.
Publicado: (2012)