Cargando…

Near-Ideal Xylene Selectivity in Adaptive Molecular Pillar[n]arene Crystals

[Image: see text] The energy-efficient separation of alkylaromatic compounds is a major industrial sustainability challenge. The use of selectively porous extended frameworks, such as zeolites or metal–organic frameworks, is one solution to this problem. Here, we studied a flexible molecular materia...

Descripción completa

Detalles Bibliográficos
Autores principales: Jie, Kecheng, Liu, Ming, Zhou, Yujuan, Little, Marc A., Pulido, Angeles, Chong, Samantha Y., Stephenson, Andrew, Hughes, Ashlea R., Sakakibara, Fumiyasu, Ogoshi, Tomoki, Blanc, Frédéric, Day, Graeme M., Huang, Feihe, Cooper, Andrew I.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2018
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5997404/
https://www.ncbi.nlm.nih.gov/pubmed/29754488
http://dx.doi.org/10.1021/jacs.8b02621
Descripción
Sumario:[Image: see text] The energy-efficient separation of alkylaromatic compounds is a major industrial sustainability challenge. The use of selectively porous extended frameworks, such as zeolites or metal–organic frameworks, is one solution to this problem. Here, we studied a flexible molecular material, perethylated pillar[n]arene crystals (n = 5, 6), which can be used to separate C8 alkylaromatic compounds. Pillar[6]arene is shown to separate para-xylene from its structural isomers, meta-xylene and ortho-xylene, with 90% specificity in the solid state. Selectivity is an intrinsic property of the pillar[6]arene host, with the flexible pillar[6]arene cavities adapting during adsorption thus enabling preferential adsorption of para-xylene in the solid state. The flexibility of pillar[6]arene as a solid sorbent is rationalized using molecular conformer searches and crystal structure prediction (CSP) combined with comprehensive characterization by X-ray diffraction and (13)C solid-state NMR spectroscopy. The CSP study, which takes into account the structural variability of pillar[6]arene, breaks new ground in its own right and showcases the feasibility of applying CSP methods to understand and ultimately to predict the behavior of soft, adaptive molecular crystals.