Cargando…

An edge‐readout, multilayer detector for positron emission tomography

PURPOSE: We present a novel gamma‐ray‐detector design based on total internal reflection (TIR) of scintillation photons within a crystal that addresses many limitations of traditional PET detectors. Our approach has appealing features, including submillimeter lateral resolution, DOI positioning from...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Xin, Ruiz‐Gonzalez, Maria, Furenlid, Lars R.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5997541/
https://www.ncbi.nlm.nih.gov/pubmed/29635734
http://dx.doi.org/10.1002/mp.12906
_version_ 1783331059347226624
author Li, Xin
Ruiz‐Gonzalez, Maria
Furenlid, Lars R.
author_facet Li, Xin
Ruiz‐Gonzalez, Maria
Furenlid, Lars R.
author_sort Li, Xin
collection PubMed
description PURPOSE: We present a novel gamma‐ray‐detector design based on total internal reflection (TIR) of scintillation photons within a crystal that addresses many limitations of traditional PET detectors. Our approach has appealing features, including submillimeter lateral resolution, DOI positioning from layer thickness, and excellent energy resolution. The design places light sensors on the edges of a stack of scintillator slabs separated by small air gaps and exploits the phenomenon that more than 80% of scintillation light emitted during a gamma‐ray event reaches the edges of a thin crystal with polished faces due to TIR. Gamma‐ray stopping power is achieved by stacking multiple layers, and DOI is determined by which layer the gamma ray interacts in. METHOD: The concept of edge readouts of a thin slab was verified by Monte Carlo simulation of scintillation light transport. An LYSO crystal of dimensions 50.8 mm × 50.8 mm × 3.0 mm was modeled with five rectangular SiPMs placed along each edge face. The mean‐detector‐response functions (MDRFs) were calculated by simulating signals from 511 keV gamma‐ray interactions in a grid of locations. Simulations were carried out to study the influence of choice of scintillator material and dimensions, gamma‐ray photon energies, introduction of laser or mechanically induced optical barriers (LIOBs, MIOBs), and refractive indices of optical‐coupling media and SiPM windows. We also analyzed timing performance including influence of gamma‐ray interaction position and presence of optical barriers. We also modeled and built a prototype detector, a 27.4 mm × 27.4 mm × 3.0 mm CsI(Tl) crystal with 4 SiPMs per edge to experimentally validate the results predicted by the simulations. The prototype detector used CsI(Tl) crystals from Proteus outfitted with 16 Hamamatsu model S13360‐6050PE MPPCs read out by an AiT‐16‐channel readout. The MDRFs were measured by scanning the detector with a collimated beam of 662‐keV photons from a (137)Cs source. The spatial resolution was experimentally determined by imaging a tungsten slit that created a beam of 0.44 mm (FWHM) width normal to the detector surface. The energy resolution was evaluated by analyzing list‐mode data from flood illumination by the (137)Cs source. RESULT: We find that in a block‐detector‐sized LYSO layer read out by five SiPMs per edge, illuminated by 511‐keV photons, the average resolution is 1.49 mm (FWHM). With the introduction of optical barriers, average spatial resolution improves to 0.56 mm (FWHM). The DOI resolution is the layer thickness of 3.0 mm. We also find that optical‐coupling media and SiPM‐window materials have an impact on spatial resolution. The timing simulation with LYSO crystal yields a coincidence resolving time (CRT) of 200–400 ps, which is slightly position dependent. And the introduction of optical barriers has minimum influence. The prototype CsI(Tl) detector, with a smaller area and fewer SiPMs, was measured to have central‐area spatial resolutions of 0.70 and 0.39 mm without and with optical barriers, respectively. These results match well with our simulations. An energy resolution of 6.4% was achieved at 662 keV. CONCLUSION: A detector design based on a stack of monolithic scintillator layers that uses edge readouts offers several advantages over current block detectors for PET. For example, there is no tradeoff between spatial resolution and detection sensitivity since no reflector material displaces scintillator crystal, and submillimeter resolution can be achieved. DOI information is readily available, and excellent timing and energy resolutions are possible.
format Online
Article
Text
id pubmed-5997541
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-59975412018-07-12 An edge‐readout, multilayer detector for positron emission tomography Li, Xin Ruiz‐Gonzalez, Maria Furenlid, Lars R. Med Phys DIAGNOSTIC IMAGING (IONIZING AND NON‐IONIZING) PURPOSE: We present a novel gamma‐ray‐detector design based on total internal reflection (TIR) of scintillation photons within a crystal that addresses many limitations of traditional PET detectors. Our approach has appealing features, including submillimeter lateral resolution, DOI positioning from layer thickness, and excellent energy resolution. The design places light sensors on the edges of a stack of scintillator slabs separated by small air gaps and exploits the phenomenon that more than 80% of scintillation light emitted during a gamma‐ray event reaches the edges of a thin crystal with polished faces due to TIR. Gamma‐ray stopping power is achieved by stacking multiple layers, and DOI is determined by which layer the gamma ray interacts in. METHOD: The concept of edge readouts of a thin slab was verified by Monte Carlo simulation of scintillation light transport. An LYSO crystal of dimensions 50.8 mm × 50.8 mm × 3.0 mm was modeled with five rectangular SiPMs placed along each edge face. The mean‐detector‐response functions (MDRFs) were calculated by simulating signals from 511 keV gamma‐ray interactions in a grid of locations. Simulations were carried out to study the influence of choice of scintillator material and dimensions, gamma‐ray photon energies, introduction of laser or mechanically induced optical barriers (LIOBs, MIOBs), and refractive indices of optical‐coupling media and SiPM windows. We also analyzed timing performance including influence of gamma‐ray interaction position and presence of optical barriers. We also modeled and built a prototype detector, a 27.4 mm × 27.4 mm × 3.0 mm CsI(Tl) crystal with 4 SiPMs per edge to experimentally validate the results predicted by the simulations. The prototype detector used CsI(Tl) crystals from Proteus outfitted with 16 Hamamatsu model S13360‐6050PE MPPCs read out by an AiT‐16‐channel readout. The MDRFs were measured by scanning the detector with a collimated beam of 662‐keV photons from a (137)Cs source. The spatial resolution was experimentally determined by imaging a tungsten slit that created a beam of 0.44 mm (FWHM) width normal to the detector surface. The energy resolution was evaluated by analyzing list‐mode data from flood illumination by the (137)Cs source. RESULT: We find that in a block‐detector‐sized LYSO layer read out by five SiPMs per edge, illuminated by 511‐keV photons, the average resolution is 1.49 mm (FWHM). With the introduction of optical barriers, average spatial resolution improves to 0.56 mm (FWHM). The DOI resolution is the layer thickness of 3.0 mm. We also find that optical‐coupling media and SiPM‐window materials have an impact on spatial resolution. The timing simulation with LYSO crystal yields a coincidence resolving time (CRT) of 200–400 ps, which is slightly position dependent. And the introduction of optical barriers has minimum influence. The prototype CsI(Tl) detector, with a smaller area and fewer SiPMs, was measured to have central‐area spatial resolutions of 0.70 and 0.39 mm without and with optical barriers, respectively. These results match well with our simulations. An energy resolution of 6.4% was achieved at 662 keV. CONCLUSION: A detector design based on a stack of monolithic scintillator layers that uses edge readouts offers several advantages over current block detectors for PET. For example, there is no tradeoff between spatial resolution and detection sensitivity since no reflector material displaces scintillator crystal, and submillimeter resolution can be achieved. DOI information is readily available, and excellent timing and energy resolutions are possible. John Wiley and Sons Inc. 2018-05-06 2018-06 /pmc/articles/PMC5997541/ /pubmed/29635734 http://dx.doi.org/10.1002/mp.12906 Text en © 2018 The Authors. Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine. This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made.
spellingShingle DIAGNOSTIC IMAGING (IONIZING AND NON‐IONIZING)
Li, Xin
Ruiz‐Gonzalez, Maria
Furenlid, Lars R.
An edge‐readout, multilayer detector for positron emission tomography
title An edge‐readout, multilayer detector for positron emission tomography
title_full An edge‐readout, multilayer detector for positron emission tomography
title_fullStr An edge‐readout, multilayer detector for positron emission tomography
title_full_unstemmed An edge‐readout, multilayer detector for positron emission tomography
title_short An edge‐readout, multilayer detector for positron emission tomography
title_sort edge‐readout, multilayer detector for positron emission tomography
topic DIAGNOSTIC IMAGING (IONIZING AND NON‐IONIZING)
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5997541/
https://www.ncbi.nlm.nih.gov/pubmed/29635734
http://dx.doi.org/10.1002/mp.12906
work_keys_str_mv AT lixin anedgereadoutmultilayerdetectorforpositronemissiontomography
AT ruizgonzalezmaria anedgereadoutmultilayerdetectorforpositronemissiontomography
AT furenlidlarsr anedgereadoutmultilayerdetectorforpositronemissiontomography
AT lixin edgereadoutmultilayerdetectorforpositronemissiontomography
AT ruizgonzalezmaria edgereadoutmultilayerdetectorforpositronemissiontomography
AT furenlidlarsr edgereadoutmultilayerdetectorforpositronemissiontomography