Cargando…
An unsupervised automatic segmentation algorithm for breast tissue classification of dedicated breast computed tomography images
PURPOSE: To develop and evaluate a new automatic classification algorithm to identify voxels containing skin, vasculature, adipose, and fibroglandular tissue in dedicated breast CT images. METHODS: The proposed algorithm combines intensity‐ and region‐based segmentation methods with energy minimizin...
Autores principales: | Caballo, Marco, Boone, John M., Mann, Ritse, Sechopoulos, Ioannis |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5997547/ https://www.ncbi.nlm.nih.gov/pubmed/29676025 http://dx.doi.org/10.1002/mp.12920 |
Ejemplares similares
-
Multi‐marker quantitative radiomics for mass characterization in dedicated breast CT imaging
por: Caballo, Marco, et al.
Publicado: (2020) -
Iodine quantification in limited angle tomography
por: Michielsen, Koen, et al.
Publicado: (2020) -
Accuracy of registration algorithms in subtraction CT of the lungs: A digital phantom study
por: Grob, Dagmar, et al.
Publicado: (2019) -
Patient‐based 4D digital breast phantom for perfusion contrast‐enhanced breast CT imaging
por: Caballo, Marco, et al.
Publicado: (2018) -
3D volume reconstruction from serial breast specimen radiographs for mapping between histology and 3D whole specimen imaging
por: Mertzanidou, Thomy, et al.
Publicado: (2017)