Cargando…

Data sets of migration barriers for atomistic Kinetic Monte Carlo simulations of Fe self-diffusion

Atomistic rigid lattice Kinetic Monte Carlo (KMC) is an efficient method for simulating nano-objects and surfaces at timescales much longer than those accessible by molecular dynamics. A laborious and non-trivial part of constructing any KMC model is, however, to calculate all migration barriers tha...

Descripción completa

Detalles Bibliográficos
Autores principales: Baibuz, Ekaterina, Vigonski, Simon, Lahtinen, Jyri, Zhao, Junlei, Jansson, Ville, Zadin, Vahur, Djurabekova, Flyura
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5997586/
https://www.ncbi.nlm.nih.gov/pubmed/29900356
http://dx.doi.org/10.1016/j.dib.2018.04.060
Descripción
Sumario:Atomistic rigid lattice Kinetic Monte Carlo (KMC) is an efficient method for simulating nano-objects and surfaces at timescales much longer than those accessible by molecular dynamics. A laborious and non-trivial part of constructing any KMC model is, however, to calculate all migration barriers that are needed to give the probabilities for any atom jump event to occur in the simulations. We calculated three data sets of migration barriers for Fe self-diffusion: barriers of first nearest neighbour jumps, second nearest neighbours hop-on jumps on the Fe {100} surface and a set of barriers of the diagonal exchange processes for various cases of the local atomic environments within the 2nn coordination shell.