Cargando…
Automated diabetic retinopathy detection in smartphone-based fundus photography using artificial intelligence
OBJECTIVES: To assess the role of artificial intelligence (AI)-based automated software for detection of diabetic retinopathy (DR) and sight-threatening DR (STDR) by fundus photography taken using a smartphone-based device and validate it against ophthalmologist’s grading. METHODS: Three hundred and...
Autores principales: | Rajalakshmi, Ramachandran, Subashini, Radhakrishnan, Anjana, Ranjit Mohan, Mohan, Viswanathan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5997766/ https://www.ncbi.nlm.nih.gov/pubmed/29520050 http://dx.doi.org/10.1038/s41433-018-0064-9 |
Ejemplares similares
-
Validation of Smartphone Based Retinal Photography for Diabetic Retinopathy Screening
por: Rajalakshmi, Ramachandran, et al.
Publicado: (2015) -
Accuracy of the smartphone-based nonmydriatic retinal camera in the detection of sight-threatening diabetic retinopathy
por: Prathiba, Vijayaraghavan, et al.
Publicado: (2020) -
Validation of Artificial Intelligence Algorithm in the Detection and Staging of Diabetic Retinopathy through Fundus Photography: An Automated Tool for Detection and Grading of Diabetic Retinopathy
por: Pawar, Bhargavi, et al.
Publicado: (2021) -
Smartphone Fundus Photography
por: Nazari Khanamiri, Hossein, et al.
Publicado: (2017) -
Commentary: Artificial intelligence and smartphone fundus photography – Are we at the cusp of revolutionary changes in retinal disease detection?
por: Madanagopalan, V G, et al.
Publicado: (2020)