Cargando…

Characterization of Actinobacterial Communities from Arauca River Sediments (Colombia) Reveals Antimicrobial Potential Presented in Low Abundant Isolates

INTRODUCTION: New strategies have been arisen to set a rapid and effective screening for selection of microorganism with bioactive potential. This study suggests that combination of physicochemical pretreatments and taxonomic dereplication of microbial collections through MALDI-TOF MS, facilitates t...

Descripción completa

Detalles Bibliográficos
Autores principales: Arango, Carolina, Acosta-Gonzalez, Alejandro, Parra-Giraldo, Claudia M., Sánchez-Quitian, Zilpa A., Kerr, Russell, Díaz, Luis E.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Bentham Open 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5997859/
https://www.ncbi.nlm.nih.gov/pubmed/29997703
http://dx.doi.org/10.2174/1874285801812010181
Descripción
Sumario:INTRODUCTION: New strategies have been arisen to set a rapid and effective screening for selection of microorganism with bioactive potential. This study suggests that combination of physicochemical pretreatments and taxonomic dereplication of microbial collections through MALDI-TOF MS, facilitates the detection of low abundance actinobacteria with potential as a source of antimicrobial agents. MATERIAL AND METHODS: An unstudied microbial community from a tropical river sediment in Colombian Orinoquía is described, applying an extended cultivation strategy using physicochemical pretreatments, biological screenings and taxonomic dereplication through MALDI-TOF MS approach. RESULTS: Actinobacteria-like isolates (790) were growth and their antimicrobial activity was assessed against methicillin-resistant Staphylococcus aureus, Vancomycin-resistant Enterococcus faecium, extended-spectrum β-lactamase Klebsiella pnumoniae, and clinical isolates of Cladosporium cladosporioides and Epicoccum nigrum. Seventy-eight isolates, belonging to the Streptomycetaceae family according to 16S rDNA analysis were found to have antimicrobial activity and were categorized as low abundance actinobacteria by MALDI-TOF MS. CONCLUSION: The results suggest that combination of physicochemical pretreatments and taxonomic dereplication of microbial collections through MALDI-TOF MS, facilitates the detection of low abundance actinobacteria with potential as a source of antimicrobial agents.