Cargando…
Applying machine learning techniques to predict the properties of energetic materials
We present a proof of concept that machine learning techniques can be used to predict the properties of CNOHF energetic molecules from their molecular structures. We focus on a small but diverse dataset consisting of 109 molecular structures spread across ten compound classes. Up until now, candidat...
Autores principales: | Elton, Daniel C., Boukouvalas, Zois, Butrico, Mark S., Fuge, Mark D., Chung, Peter W. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5998124/ https://www.ncbi.nlm.nih.gov/pubmed/29899464 http://dx.doi.org/10.1038/s41598-018-27344-x |
Ejemplares similares
-
Prediction and Construction of Energetic Materials Based on Machine Learning Methods
por: Zang, Xiaowei, et al.
Publicado: (2022) -
Identification of heavy, energetic, hadronically decaying particles using machine-learning techniques
por: Sirunyan, Albert M, et al.
Publicado: (2020) -
Machine Learning Techniques Applied to Dose Prediction in Computed Tomography Tests
por: Garcia-Sanchez, Antonio-Javier, et al.
Publicado: (2019) -
Applying Different Machine Learning Techniques for Prediction of COVID-19 Severity
Publicado: (2021) -
Smart Materials Prediction: Applying Machine Learning to Lithium Solid-State Electrolyte
por: Hu, Qianyu, et al.
Publicado: (2022)