Cargando…
Human MLL-AF9 Overexpression Induces Aberrant Hematopoietic Expansion in Zebrafish
The 11q23 of the mixed lineage leukemia 1 (MLL1) gene plays a crucial role in early embryonic development and hematopoiesis. The MLL-AF9 fusion gene, resulting from chromosomal translocation, often leads to acute myeloid leukemia with poor prognosis. Here, we generated a zebrafish model expressing t...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5998191/ https://www.ncbi.nlm.nih.gov/pubmed/30003105 http://dx.doi.org/10.1155/2018/6705842 |
Sumario: | The 11q23 of the mixed lineage leukemia 1 (MLL1) gene plays a crucial role in early embryonic development and hematopoiesis. The MLL-AF9 fusion gene, resulting from chromosomal translocation, often leads to acute myeloid leukemia with poor prognosis. Here, we generated a zebrafish model expressing the human MLL-AF9 fusion gene. Microinjection of human MLL-AF9 mRNA into zebrafish embryos resulted in enhanced hematopoiesis and the activation of downstream genes such as meis1 and hox cluster genes. Embryonic MLL-AF9 expression upregulated HSPC and myeloid lineage markers. Doxorubicin and MI-2 (a menin inhibitor) treatments significantly restored normal hematopoiesis in MLL-AF9-expressing animals. This study provides insight into the role of MLL-AF9 in zebrafish hematopoiesis and establishes a robust and efficient in vivo model for high-throughput drug screening. |
---|