Cargando…
Glucocorticoid-dependent REDD1 expression reduces muscle metabolism to enable adaptation under energetic stress
BACKGROUND: Skeletal muscle atrophy is a common feature of numerous chronic pathologies and is correlated with patient mortality. The REDD1 protein is currently recognized as a negative regulator of muscle mass through inhibition of the Akt/mTORC1 signaling pathway. REDD1 expression is notably induc...
Autores principales: | , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5998563/ https://www.ncbi.nlm.nih.gov/pubmed/29895328 http://dx.doi.org/10.1186/s12915-018-0525-4 |
_version_ | 1783331253835005952 |
---|---|
author | Britto, Florian A. Cortade, Fabienne Belloum, Yassine Blaquière, Marine Gallot, Yann S. Docquier, Aurélie Pagano, Allan F. Jublanc, Elodie Bendridi, Nadia Koechlin-Ramonatxo, Christelle Chabi, Béatrice Francaux, Marc Casas, François Freyssenet, Damien Rieusset, Jennifer Giorgetti-Peraldi, Sophie Carnac, Gilles Ollendorff, Vincent Favier, François B. |
author_facet | Britto, Florian A. Cortade, Fabienne Belloum, Yassine Blaquière, Marine Gallot, Yann S. Docquier, Aurélie Pagano, Allan F. Jublanc, Elodie Bendridi, Nadia Koechlin-Ramonatxo, Christelle Chabi, Béatrice Francaux, Marc Casas, François Freyssenet, Damien Rieusset, Jennifer Giorgetti-Peraldi, Sophie Carnac, Gilles Ollendorff, Vincent Favier, François B. |
author_sort | Britto, Florian A. |
collection | PubMed |
description | BACKGROUND: Skeletal muscle atrophy is a common feature of numerous chronic pathologies and is correlated with patient mortality. The REDD1 protein is currently recognized as a negative regulator of muscle mass through inhibition of the Akt/mTORC1 signaling pathway. REDD1 expression is notably induced following glucocorticoid secretion, which is a component of energy stress responses. RESULTS: Unexpectedly, we show here that REDD1 instead limits muscle loss during energetic stresses such as hypoxia and fasting by reducing glycogen depletion and AMPK activation. Indeed, we demonstrate that REDD1 is required to decrease O(2) and ATP consumption in skeletal muscle via reduction of the extent of mitochondrial-associated endoplasmic reticulum membranes (MAMs), a central hub connecting energy production by mitochondria and anabolic processes. In fact, REDD1 inhibits ATP-demanding processes such as glycogen storage and protein synthesis through disruption of the Akt/Hexokinase II and PRAS40/mTORC1 signaling pathways in MAMs. Our results uncover a new REDD1-dependent mechanism coupling mitochondrial respiration and anabolic processes during hypoxia, fasting, and exercise. CONCLUSIONS: Therefore, REDD1 is a crucial negative regulator of energy expenditure that is necessary for muscle adaptation during energetic stresses. This present study could shed new light on the role of REDD1 in several pathologies associated with energetic metabolism alteration, such as cancer, diabetes, and Parkinson’s disease. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s12915-018-0525-4) contains supplementary material, which is available to authorized users. |
format | Online Article Text |
id | pubmed-5998563 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-59985632018-06-25 Glucocorticoid-dependent REDD1 expression reduces muscle metabolism to enable adaptation under energetic stress Britto, Florian A. Cortade, Fabienne Belloum, Yassine Blaquière, Marine Gallot, Yann S. Docquier, Aurélie Pagano, Allan F. Jublanc, Elodie Bendridi, Nadia Koechlin-Ramonatxo, Christelle Chabi, Béatrice Francaux, Marc Casas, François Freyssenet, Damien Rieusset, Jennifer Giorgetti-Peraldi, Sophie Carnac, Gilles Ollendorff, Vincent Favier, François B. BMC Biol Research Article BACKGROUND: Skeletal muscle atrophy is a common feature of numerous chronic pathologies and is correlated with patient mortality. The REDD1 protein is currently recognized as a negative regulator of muscle mass through inhibition of the Akt/mTORC1 signaling pathway. REDD1 expression is notably induced following glucocorticoid secretion, which is a component of energy stress responses. RESULTS: Unexpectedly, we show here that REDD1 instead limits muscle loss during energetic stresses such as hypoxia and fasting by reducing glycogen depletion and AMPK activation. Indeed, we demonstrate that REDD1 is required to decrease O(2) and ATP consumption in skeletal muscle via reduction of the extent of mitochondrial-associated endoplasmic reticulum membranes (MAMs), a central hub connecting energy production by mitochondria and anabolic processes. In fact, REDD1 inhibits ATP-demanding processes such as glycogen storage and protein synthesis through disruption of the Akt/Hexokinase II and PRAS40/mTORC1 signaling pathways in MAMs. Our results uncover a new REDD1-dependent mechanism coupling mitochondrial respiration and anabolic processes during hypoxia, fasting, and exercise. CONCLUSIONS: Therefore, REDD1 is a crucial negative regulator of energy expenditure that is necessary for muscle adaptation during energetic stresses. This present study could shed new light on the role of REDD1 in several pathologies associated with energetic metabolism alteration, such as cancer, diabetes, and Parkinson’s disease. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s12915-018-0525-4) contains supplementary material, which is available to authorized users. BioMed Central 2018-06-12 /pmc/articles/PMC5998563/ /pubmed/29895328 http://dx.doi.org/10.1186/s12915-018-0525-4 Text en © Favier et al. 2018 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Research Article Britto, Florian A. Cortade, Fabienne Belloum, Yassine Blaquière, Marine Gallot, Yann S. Docquier, Aurélie Pagano, Allan F. Jublanc, Elodie Bendridi, Nadia Koechlin-Ramonatxo, Christelle Chabi, Béatrice Francaux, Marc Casas, François Freyssenet, Damien Rieusset, Jennifer Giorgetti-Peraldi, Sophie Carnac, Gilles Ollendorff, Vincent Favier, François B. Glucocorticoid-dependent REDD1 expression reduces muscle metabolism to enable adaptation under energetic stress |
title | Glucocorticoid-dependent REDD1 expression reduces muscle metabolism to enable adaptation under energetic stress |
title_full | Glucocorticoid-dependent REDD1 expression reduces muscle metabolism to enable adaptation under energetic stress |
title_fullStr | Glucocorticoid-dependent REDD1 expression reduces muscle metabolism to enable adaptation under energetic stress |
title_full_unstemmed | Glucocorticoid-dependent REDD1 expression reduces muscle metabolism to enable adaptation under energetic stress |
title_short | Glucocorticoid-dependent REDD1 expression reduces muscle metabolism to enable adaptation under energetic stress |
title_sort | glucocorticoid-dependent redd1 expression reduces muscle metabolism to enable adaptation under energetic stress |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5998563/ https://www.ncbi.nlm.nih.gov/pubmed/29895328 http://dx.doi.org/10.1186/s12915-018-0525-4 |
work_keys_str_mv | AT brittofloriana glucocorticoiddependentredd1expressionreducesmusclemetabolismtoenableadaptationunderenergeticstress AT cortadefabienne glucocorticoiddependentredd1expressionreducesmusclemetabolismtoenableadaptationunderenergeticstress AT belloumyassine glucocorticoiddependentredd1expressionreducesmusclemetabolismtoenableadaptationunderenergeticstress AT blaquieremarine glucocorticoiddependentredd1expressionreducesmusclemetabolismtoenableadaptationunderenergeticstress AT gallotyanns glucocorticoiddependentredd1expressionreducesmusclemetabolismtoenableadaptationunderenergeticstress AT docquieraurelie glucocorticoiddependentredd1expressionreducesmusclemetabolismtoenableadaptationunderenergeticstress AT paganoallanf glucocorticoiddependentredd1expressionreducesmusclemetabolismtoenableadaptationunderenergeticstress AT jublancelodie glucocorticoiddependentredd1expressionreducesmusclemetabolismtoenableadaptationunderenergeticstress AT bendridinadia glucocorticoiddependentredd1expressionreducesmusclemetabolismtoenableadaptationunderenergeticstress AT koechlinramonatxochristelle glucocorticoiddependentredd1expressionreducesmusclemetabolismtoenableadaptationunderenergeticstress AT chabibeatrice glucocorticoiddependentredd1expressionreducesmusclemetabolismtoenableadaptationunderenergeticstress AT francauxmarc glucocorticoiddependentredd1expressionreducesmusclemetabolismtoenableadaptationunderenergeticstress AT casasfrancois glucocorticoiddependentredd1expressionreducesmusclemetabolismtoenableadaptationunderenergeticstress AT freyssenetdamien glucocorticoiddependentredd1expressionreducesmusclemetabolismtoenableadaptationunderenergeticstress AT rieussetjennifer glucocorticoiddependentredd1expressionreducesmusclemetabolismtoenableadaptationunderenergeticstress AT giorgettiperaldisophie glucocorticoiddependentredd1expressionreducesmusclemetabolismtoenableadaptationunderenergeticstress AT carnacgilles glucocorticoiddependentredd1expressionreducesmusclemetabolismtoenableadaptationunderenergeticstress AT ollendorffvincent glucocorticoiddependentredd1expressionreducesmusclemetabolismtoenableadaptationunderenergeticstress AT favierfrancoisb glucocorticoiddependentredd1expressionreducesmusclemetabolismtoenableadaptationunderenergeticstress |