Cargando…
Using brain connectivity metrics from synchrostates to perform motor imagery classification in EEG-based BCI systems
Phase synchronisation between different neural groups is considered an important source of information to understand the underlying mechanisms of brain cognition. This Letter investigated phase-synchronisation patterns from electroencephalogram (EEG) signals recorded from ten healthy participants pe...
Autores principales: | Santamaria, Lorena, James, Christopher |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Institution of Engineering and Technology
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5998754/ https://www.ncbi.nlm.nih.gov/pubmed/29922477 http://dx.doi.org/10.1049/htl.2017.0049 |
Ejemplares similares
-
Task Transfer Learning for EEG Classification in Motor Imagery-Based BCI System
por: Zheng, Xuanci, et al.
Publicado: (2020) -
Classification of motor imagery EEG using deep learning increases performance in inefficient BCI users
por: Tibrewal, Navneet, et al.
Publicado: (2022) -
Predicting Motor Imagery BCI Performance Based on EEG Microstate Analysis
por: Cui, Yujie, et al.
Publicado: (2023) -
Investigating User Proficiency of Motor Imagery for EEG-Based BCI System to Control Simulated Wheelchair
por: Saichoo, Theerat, et al.
Publicado: (2022) -
Bridging the BCI illiteracy gap: a subject-to-subject semantic style transfer for EEG-based motor imagery classification
por: Kim, Da-Hyun, et al.
Publicado: (2023)