Cargando…
Identifying tweets of personal health experience through word embedding and LSTM neural network
BACKGROUND: As Twitter has become an active data source for health surveillance research, it is important that efficient and effective methods are developed to identify tweets related to personal health experience. Conventional classification algorithms rely on features engineered by human domain ex...
Autores principales: | Jiang, Keyuan, Feng, Shichao, Song, Qunhao, Calix, Ricardo A., Gupta, Matrika, Bernard, Gordon R. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5998756/ https://www.ncbi.nlm.nih.gov/pubmed/29897323 http://dx.doi.org/10.1186/s12859-018-2198-y |
Ejemplares similares
-
Deepfake tweets classification using stacked Bi-LSTM and words embedding
por: Rupapara, Vaibhav, et al.
Publicado: (2021) -
An Automated Toxicity Classification on Social Media Using LSTM and Word Embedding
por: Alsharef, Ahmad, et al.
Publicado: (2022) -
Retracted: An Automated Toxicity Classification on Social Media Using LSTM and Word Embedding
por: Neuroscience, Computational Intelligence and
Publicado: (2023) -
Predicting Geolocation of Tweets: Using Combination of CNN and BiLSTM
por: Mahajan, Rhea, et al.
Publicado: (2021) -
Word embeddings and deep learning for location prediction: tracking Coronavirus from British and American tweets
por: Hasni, Sarra, et al.
Publicado: (2021)