Cargando…
Semi-Supervised Recurrent Neural Network for Adverse Drug Reaction mention extraction
BACKGROUND: Social media is a useful platform to share health-related information due to its vast reach. This makes it a good candidate for public-health monitoring tasks, specifically for pharmacovigilance. We study the problem of extraction of Adverse-Drug-Reaction (ADR) mentions from social media...
Autores principales: | Gupta, Shashank, Pawar, Sachin, Ramrakhiyani, Nitin, Palshikar, Girish Keshav, Varma, Vasudeva |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5998760/ https://www.ncbi.nlm.nih.gov/pubmed/29897321 http://dx.doi.org/10.1186/s12859-018-2192-4 |
Ejemplares similares
-
Distant supervision for medical concept normalization
por: Pattisapu, Nikhil, et al.
Publicado: (2020) -
Deep neural networks and distant supervision for geographic location mention extraction
por: Magge, Arjun, et al.
Publicado: (2018) -
Deep semi-supervised learning ensemble framework for classifying co-mentions of human proteins and phenotypes
por: Pourreza Shahri, Morteza, et al.
Publicado: (2021) -
Mentioned in Dispatches
Publicado: (1915) -
Honorable Mention
Publicado: (1890)