Cargando…

Generation and comparative genomics of synthetic dengue viruses

BACKGROUND: Synthetic virology is an important multidisciplinary scientific field, with emerging applications in biotechnology and medicine, aiming at developing methods to generate and engineer synthetic viruses. In particular, many of the RNA viruses, including among others the Dengue and Zika, ar...

Descripción completa

Detalles Bibliográficos
Autores principales: Goz, Eli, Tsalenchuck, Yael, Benaroya, Rony Oren, Zafrir, Zohar, Atar, Shimshi, Altman, Tahel, Julander, Justin, Tuller, Tamir
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5998877/
https://www.ncbi.nlm.nih.gov/pubmed/29745863
http://dx.doi.org/10.1186/s12859-018-2132-3
Descripción
Sumario:BACKGROUND: Synthetic virology is an important multidisciplinary scientific field, with emerging applications in biotechnology and medicine, aiming at developing methods to generate and engineer synthetic viruses. In particular, many of the RNA viruses, including among others the Dengue and Zika, are widespread pathogens of significant importance to human health. The ability to design and synthesize such viruses may contribute to exploring novel approaches for developing vaccines and virus based therapies. RESULTS: Here we develop a full multidisciplinary pipeline for generation and analysis of synthetic RNA viruses and specifically apply it to Dengue virus serotype 2 (DENV-2). The major steps of the pipeline include comparative genomics of endogenous and synthetic viral strains. Specifically, we show that although the synthetic DENV-2 viruses were found to have lower nucleotide variability, their phenotype, as reflected in the study of the AG129 mouse model morbidity, RNA levels, and neutralization antibodies, is similar or even more pathogenic in comparison to the wildtype master strain. Additionally, the highly variable positions, identified in the analyzed DENV-2 population, were found to overlap with less conserved homologous positions in Zika virus and other Dengue serotypes. These results may suggest that synthetic DENV-2 could enhance virulence if the correct sequence is selected. CONCLUSIONS: The approach reported in this study can be used to generate and analyze synthetic RNA viruses both on genotypic and on phenotypic level. It could be applied for understanding the functionality and the fitness effects of any set of mutations in viral RNA and for editing RNA viruses for various target applications. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s12859-018-2132-3) contains supplementary material, which is available to authorized users.