Cargando…
Computing the family-free DCJ similarity
BACKGROUND: The genomic similarity is a large-scale measure for comparing two given genomes. In this work we study the (NP-hard) problem of computing the genomic similarity under the DCJ model in a setting that does not assume that the genes of the compared genomes are grouped into gene families. Th...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5998916/ https://www.ncbi.nlm.nih.gov/pubmed/29745861 http://dx.doi.org/10.1186/s12859-018-2130-5 |
Sumario: | BACKGROUND: The genomic similarity is a large-scale measure for comparing two given genomes. In this work we study the (NP-hard) problem of computing the genomic similarity under the DCJ model in a setting that does not assume that the genes of the compared genomes are grouped into gene families. This problem is called family-free DCJ similarity. RESULTS: We propose an exact ILP algorithm to solve the family-free DCJ similarity problem, then we show its APX-hardness and present four combinatorial heuristics with computational experiments comparing their results to the ILP. CONCLUSIONS: We show that the family-free DCJ similarity can be computed in reasonable time, although for larger genomes it is necessary to resort to heuristics. This provides a basis for further studies on the applicability and model refinement of family-free whole genome similarity measures. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s12859-018-2130-5) contains supplementary material, which is available to authorized users. |
---|