Cargando…

PEITH(Θ): perfecting experiments with information theory in Python with GPU support

MOTIVATION: Different experiments provide differing levels of information about a biological system. This makes it difficult, a priori, to select one of them beyond mere speculation and/or belief, especially when resources are limited. With the increasing diversity of experimental approaches and gen...

Descripción completa

Detalles Bibliográficos
Autores principales: Dony, Leander, Mackerodt, Jonas, Ward, Scott, Filippi, Sarah, Stumpf, Michael P H, Liepe, Juliane
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5998942/
https://www.ncbi.nlm.nih.gov/pubmed/29228182
http://dx.doi.org/10.1093/bioinformatics/btx776
Descripción
Sumario:MOTIVATION: Different experiments provide differing levels of information about a biological system. This makes it difficult, a priori, to select one of them beyond mere speculation and/or belief, especially when resources are limited. With the increasing diversity of experimental approaches and general advances in quantitative systems biology, methods that inform us about the information content that a given experiment carries about the question we want to answer, become crucial. RESULTS: PEITH(Θ) is a general purpose, Python framework for experimental design in systems biology. PEITH(Θ) uses Bayesian inference and information theory in order to derive which experiments are most informative in order to estimate all model parameters and/or perform model predictions. AVAILABILITY AND IMPLEMENTATION: https://github.com/MichaelPHStumpf/Peitho