Cargando…
PEITH(Θ): perfecting experiments with information theory in Python with GPU support
MOTIVATION: Different experiments provide differing levels of information about a biological system. This makes it difficult, a priori, to select one of them beyond mere speculation and/or belief, especially when resources are limited. With the increasing diversity of experimental approaches and gen...
Autores principales: | Dony, Leander, Mackerodt, Jonas, Ward, Scott, Filippi, Sarah, Stumpf, Michael P H, Liepe, Juliane |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5998942/ https://www.ncbi.nlm.nih.gov/pubmed/29228182 http://dx.doi.org/10.1093/bioinformatics/btx776 |
Ejemplares similares
-
ABC-SysBio—approximate Bayesian computation in Python with GPU support
por: Liepe, Juliane, et al.
Publicado: (2010) -
GPU accelerated biochemical network simulation
por: Zhou, Yanxiang, et al.
Publicado: (2011) -
MEANS: python package for Moment Expansion Approximation, iNference and Simulation
por: Fan, Sisi, et al.
Publicado: (2016) -
SW#–GPU-enabled exact alignments on genome scale
por: Korpar, Matija, et al.
Publicado: (2013) -
wenda_gpu: fast domain adaptation for genomic data
por: Hippen, Ariel A, et al.
Publicado: (2022)