Cargando…
DDR: efficient computational method to predict drug–target interactions using graph mining and machine learning approaches
MOTIVATION: Finding computationally drug–target interactions (DTIs) is a convenient strategy to identify new DTIs at low cost with reasonable accuracy. However, the current DTI prediction methods suffer the high false positive prediction rate. RESULTS: We developed DDR, a novel method that improves...
Autores principales: | Olayan, Rawan S, Ashoor, Haitham, Bajic, Vladimir B |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5998943/ https://www.ncbi.nlm.nih.gov/pubmed/29186331 http://dx.doi.org/10.1093/bioinformatics/btx731 |
Ejemplares similares
-
DDR: efficient computational method to predict drug–target interactions using graph mining and machine learning approaches
por: Olayan, Rawan S, et al.
Publicado: (2018) -
DTiGEMS+: drug–target interaction prediction using graph embedding, graph mining, and similarity-based techniques
por: Thafar, Maha A., et al.
Publicado: (2020) -
DTi2Vec: Drug–target interaction prediction using network embedding and ensemble learning
por: Thafar, Maha A., et al.
Publicado: (2021) -
TELS: A Novel Computational Framework for Identifying Motif Signatures of Transcribed Enhancers
por: Kleftogiannis, Dimitrios, et al.
Publicado: (2018) -
Graph embedding and unsupervised learning predict genomic sub-compartments from HiC chromatin interaction data
por: Ashoor, Haitham, et al.
Publicado: (2020)