Cargando…

Multifactorial mechanisms of the pathogenesis of methicillin-resistant Staphylococcus hominis isolated from bloodstream infections

Staphylococcus hominis is a species of the coagulase-negative staphylococci. It has been designated as a potential pathogen but so far the pathogenic mechanisms of this bacterium have not been determined. We studied 30 clinical isolates of methicillin-resistant S. hominis, which were previously exam...

Descripción completa

Detalles Bibliográficos
Autores principales: Szczuka, Ewa, Krzymińska, Sylwia, Bogucka, Natalia, Kaznowski, Adam
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer International Publishing 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5999180/
https://www.ncbi.nlm.nih.gov/pubmed/29264791
http://dx.doi.org/10.1007/s10482-017-1007-3
Descripción
Sumario:Staphylococcus hominis is a species of the coagulase-negative staphylococci. It has been designated as a potential pathogen but so far the pathogenic mechanisms of this bacterium have not been determined. We studied 30 clinical isolates of methicillin-resistant S. hominis, which were previously examined for biofilm forming properties. The results of this study revealed that all these S. hominis strains had the ability to adhere to HeLa cells. Over 40% of the S. hominis strains invaded epithelial cells. The invasion index ranged from 0 to 41.5%. All isolates exhibited the cytotoxic activity of extracellular factors, which caused the destruction of epithelial cells. More than 90% of these methicillin-resistant strains contained at least one aminoglycosides resistance gene. The ant(4′)-I gene was found in 63% of the isolates, aac(6′)/aph(2″) in 20% and aph(3′)-IIIa in 47%. Two strains were assigned to SCCmec type VIII and three to SCCmec type III. The remaining isolates (83%) harboured a non-typeable SCCmec type. The mec complex A was predominant in this species. The results indicate that the pathogenicity of S. hominis may be multifactorial, involving adhesion, invasion and the activity of extracellular toxins, which cause damage to the host epithelium.