Cargando…
Developing a flexible, high‐efficiency Agrobacterium‐mediated sorghum transformation system with broad application
Sorghum is the fifth most widely planted cereal crop in the world and is commonly cultivated in arid and semi‐arid regions such as Africa. Despite its importance as a food source, sorghum genetic improvement through transgenic approaches has been limited because of an inefficient transformation syst...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5999184/ https://www.ncbi.nlm.nih.gov/pubmed/29327444 http://dx.doi.org/10.1111/pbi.12879 |
Sumario: | Sorghum is the fifth most widely planted cereal crop in the world and is commonly cultivated in arid and semi‐arid regions such as Africa. Despite its importance as a food source, sorghum genetic improvement through transgenic approaches has been limited because of an inefficient transformation system. Here, we report a ternary vector (also known as cohabitating vector) system using a recently described pVIR accessory plasmid that facilitates efficient Agrobacterium‐mediated transformation of sorghum. We report regeneration frequencies ranging from 6% to 29% in Tx430 using different selectable markers and single copy, backbone free ‘quality events’ ranging from 45% to 66% of the total events produced. Furthermore, we successfully applied this ternary system to develop transformation protocols for popular but recalcitrant African varieties including Macia, Malisor 84‐7 and Tegemeo. In addition, we report the use of this technology to develop the first stable CRISPR/Cas9‐mediated gene knockouts in Tx430. |
---|