Cargando…

Vitamin D(3) Modulates Impaired Crosstalk Between RANK and Glucocorticoid Receptor Signaling in Bone Marrow Cells After Chronic Prednisolone Administration

The effectiveness of vitamin D(3) (cholecalciferol) in counteracting the side effects of glucocorticoid (GC) therapy has been demonstrated previously. Abnormalities in systemic hormonal and local (cytokine) regulation of bone marrow (BM) cells may underlie GC-induced imbalance between osteosynthesis...

Descripción completa

Detalles Bibliográficos
Autores principales: Shymanskyi, Ihor, Lisakovska, Olha, Mazanova, Anna, Labudzynskyi, Dmytro, Veliky, Mykola
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5999729/
https://www.ncbi.nlm.nih.gov/pubmed/29930537
http://dx.doi.org/10.3389/fendo.2018.00303
_version_ 1783331492675452928
author Shymanskyi, Ihor
Lisakovska, Olha
Mazanova, Anna
Labudzynskyi, Dmytro
Veliky, Mykola
author_facet Shymanskyi, Ihor
Lisakovska, Olha
Mazanova, Anna
Labudzynskyi, Dmytro
Veliky, Mykola
author_sort Shymanskyi, Ihor
collection PubMed
description The effectiveness of vitamin D(3) (cholecalciferol) in counteracting the side effects of glucocorticoid (GC) therapy has been demonstrated previously. Abnormalities in systemic hormonal and local (cytokine) regulation of bone marrow (BM) cells may underlie GC-induced imbalance between osteosynthesis and bone resorption. The cytokine system receptor activator of nuclear factor kappa-B (RANK)/RANK ligand (RANKL)/osteoprotegerin (OPG) is considered as an integrating link in the NF-κB-mediated interaction of various cells involved in maintaining osteoblastic-osteoclastic balance, which makes it a pharmacological target for regulation and correction of the bone remodeling process. We studied GC-induced impairments of the RANKL/RANK/OPG axis in BM cells depending on vitamin D bioavailability and whether these changes were mediated by glucocorticoid (GR) and/or vitamin D (VDR) receptors. Female Wistar rats administered with prednisolone (5 mg/kg b.w., 30 days) showed a decrease in the GR protein level and the number of GR-positive BM cells. GC caused a marked elevation of RANKL and RANK levels in BM, while OPG decreased. Flow cytometry data indicated GC-elicited increase in the number of circulating RANK-positive osteoclast precursors (OCPs) in BM, peripheral blood, and spleen. In full accordance with the data that the interaction of RANKL-RANK leads to transcriptional activation of NF-κB and subsequent differentiation of osteoclasts, we found an increase in the level of phosphorylated p65 subunit of NF-κB with a simultaneous decrease in the NF-κB inhibitor (IκB) level. These changes were accompanied by vitamin D insufficiency and downregulated expression of CYP27B1 and VDR, which are responsible for synthesis and hormonal signaling of 1,25(OH)(2)D. Notably, we observed VDR and RANK co-localization in OCPs. Cholecalciferol co-administration (1,000 IU/kg b.w., 30 days) with prednisolone resulted in elevated GR synthesis in BM. Cholecalciferol prevented prednisolone-elicited disturbances of the RANKL/RANK/OPG, which correlated with improved bioavailability and vitamin D signaling through VDR. This caused the lowering of phosphoNF-κB p65 level and inhibiting NF-κB translocation to the nucleus that could reduce the circulating OCPs pool in BM, peripheral blood, and spleen. Our findings suggest that prednisolone-induced abnormalities in GR and RANKL/RANK/OPG signaling pathways are associated with the impairments of vitamin D auto/paracrine system in BM cells and can be ameliorated by cholecalciferol supplementation.
format Online
Article
Text
id pubmed-5999729
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-59997292018-06-21 Vitamin D(3) Modulates Impaired Crosstalk Between RANK and Glucocorticoid Receptor Signaling in Bone Marrow Cells After Chronic Prednisolone Administration Shymanskyi, Ihor Lisakovska, Olha Mazanova, Anna Labudzynskyi, Dmytro Veliky, Mykola Front Endocrinol (Lausanne) Endocrinology The effectiveness of vitamin D(3) (cholecalciferol) in counteracting the side effects of glucocorticoid (GC) therapy has been demonstrated previously. Abnormalities in systemic hormonal and local (cytokine) regulation of bone marrow (BM) cells may underlie GC-induced imbalance between osteosynthesis and bone resorption. The cytokine system receptor activator of nuclear factor kappa-B (RANK)/RANK ligand (RANKL)/osteoprotegerin (OPG) is considered as an integrating link in the NF-κB-mediated interaction of various cells involved in maintaining osteoblastic-osteoclastic balance, which makes it a pharmacological target for regulation and correction of the bone remodeling process. We studied GC-induced impairments of the RANKL/RANK/OPG axis in BM cells depending on vitamin D bioavailability and whether these changes were mediated by glucocorticoid (GR) and/or vitamin D (VDR) receptors. Female Wistar rats administered with prednisolone (5 mg/kg b.w., 30 days) showed a decrease in the GR protein level and the number of GR-positive BM cells. GC caused a marked elevation of RANKL and RANK levels in BM, while OPG decreased. Flow cytometry data indicated GC-elicited increase in the number of circulating RANK-positive osteoclast precursors (OCPs) in BM, peripheral blood, and spleen. In full accordance with the data that the interaction of RANKL-RANK leads to transcriptional activation of NF-κB and subsequent differentiation of osteoclasts, we found an increase in the level of phosphorylated p65 subunit of NF-κB with a simultaneous decrease in the NF-κB inhibitor (IκB) level. These changes were accompanied by vitamin D insufficiency and downregulated expression of CYP27B1 and VDR, which are responsible for synthesis and hormonal signaling of 1,25(OH)(2)D. Notably, we observed VDR and RANK co-localization in OCPs. Cholecalciferol co-administration (1,000 IU/kg b.w., 30 days) with prednisolone resulted in elevated GR synthesis in BM. Cholecalciferol prevented prednisolone-elicited disturbances of the RANKL/RANK/OPG, which correlated with improved bioavailability and vitamin D signaling through VDR. This caused the lowering of phosphoNF-κB p65 level and inhibiting NF-κB translocation to the nucleus that could reduce the circulating OCPs pool in BM, peripheral blood, and spleen. Our findings suggest that prednisolone-induced abnormalities in GR and RANKL/RANK/OPG signaling pathways are associated with the impairments of vitamin D auto/paracrine system in BM cells and can be ameliorated by cholecalciferol supplementation. Frontiers Media S.A. 2018-06-07 /pmc/articles/PMC5999729/ /pubmed/29930537 http://dx.doi.org/10.3389/fendo.2018.00303 Text en Copyright © 2018 Shymanskyi, Lisakovska, Mazanova, Labudzynskyi and Veliky. https://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Endocrinology
Shymanskyi, Ihor
Lisakovska, Olha
Mazanova, Anna
Labudzynskyi, Dmytro
Veliky, Mykola
Vitamin D(3) Modulates Impaired Crosstalk Between RANK and Glucocorticoid Receptor Signaling in Bone Marrow Cells After Chronic Prednisolone Administration
title Vitamin D(3) Modulates Impaired Crosstalk Between RANK and Glucocorticoid Receptor Signaling in Bone Marrow Cells After Chronic Prednisolone Administration
title_full Vitamin D(3) Modulates Impaired Crosstalk Between RANK and Glucocorticoid Receptor Signaling in Bone Marrow Cells After Chronic Prednisolone Administration
title_fullStr Vitamin D(3) Modulates Impaired Crosstalk Between RANK and Glucocorticoid Receptor Signaling in Bone Marrow Cells After Chronic Prednisolone Administration
title_full_unstemmed Vitamin D(3) Modulates Impaired Crosstalk Between RANK and Glucocorticoid Receptor Signaling in Bone Marrow Cells After Chronic Prednisolone Administration
title_short Vitamin D(3) Modulates Impaired Crosstalk Between RANK and Glucocorticoid Receptor Signaling in Bone Marrow Cells After Chronic Prednisolone Administration
title_sort vitamin d(3) modulates impaired crosstalk between rank and glucocorticoid receptor signaling in bone marrow cells after chronic prednisolone administration
topic Endocrinology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5999729/
https://www.ncbi.nlm.nih.gov/pubmed/29930537
http://dx.doi.org/10.3389/fendo.2018.00303
work_keys_str_mv AT shymanskyiihor vitamind3modulatesimpairedcrosstalkbetweenrankandglucocorticoidreceptorsignalinginbonemarrowcellsafterchronicprednisoloneadministration
AT lisakovskaolha vitamind3modulatesimpairedcrosstalkbetweenrankandglucocorticoidreceptorsignalinginbonemarrowcellsafterchronicprednisoloneadministration
AT mazanovaanna vitamind3modulatesimpairedcrosstalkbetweenrankandglucocorticoidreceptorsignalinginbonemarrowcellsafterchronicprednisoloneadministration
AT labudzynskyidmytro vitamind3modulatesimpairedcrosstalkbetweenrankandglucocorticoidreceptorsignalinginbonemarrowcellsafterchronicprednisoloneadministration
AT velikymykola vitamind3modulatesimpairedcrosstalkbetweenrankandglucocorticoidreceptorsignalinginbonemarrowcellsafterchronicprednisoloneadministration