Cargando…

Information sensitivity functions to assess parameter information gain and identifiability of dynamical systems

A new class of functions, called the ‘information sensitivity functions’ (ISFs), which quantify the information gain about the parameters through the measurements/observables of a dynamical system are presented. These functions can be easily computed through classical sensitivity functions alone and...

Descripción completa

Detalles Bibliográficos
Autor principal: Pant, Sanjay
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6000172/
https://www.ncbi.nlm.nih.gov/pubmed/29769407
http://dx.doi.org/10.1098/rsif.2017.0871
_version_ 1783331634041323520
author Pant, Sanjay
author_facet Pant, Sanjay
author_sort Pant, Sanjay
collection PubMed
description A new class of functions, called the ‘information sensitivity functions’ (ISFs), which quantify the information gain about the parameters through the measurements/observables of a dynamical system are presented. These functions can be easily computed through classical sensitivity functions alone and are based on Bayesian and information-theoretic approaches. While marginal information gain is quantified by decrease in differential entropy, correlations between arbitrary sets of parameters are assessed through mutual information. For individual parameters, these information gains are also presented as marginal posterior variances, and, to assess the effect of correlations, as conditional variances when other parameters are given. The easy to interpret ISFs can be used to (a) identify time intervals or regions in dynamical system behaviour where information about the parameters is concentrated; (b) assess the effect of measurement noise on the information gain for the parameters; (c) assess whether sufficient information in an experimental protocol (input, measurements and their frequency) is available to identify the parameters; (d) assess correlation in the posterior distribution of the parameters to identify the sets of parameters that are likely to be indistinguishable; and (e) assess identifiability problems for particular sets of parameters.
format Online
Article
Text
id pubmed-6000172
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher The Royal Society
record_format MEDLINE/PubMed
spelling pubmed-60001722018-06-14 Information sensitivity functions to assess parameter information gain and identifiability of dynamical systems Pant, Sanjay J R Soc Interface Life Sciences–Mathematics interface A new class of functions, called the ‘information sensitivity functions’ (ISFs), which quantify the information gain about the parameters through the measurements/observables of a dynamical system are presented. These functions can be easily computed through classical sensitivity functions alone and are based on Bayesian and information-theoretic approaches. While marginal information gain is quantified by decrease in differential entropy, correlations between arbitrary sets of parameters are assessed through mutual information. For individual parameters, these information gains are also presented as marginal posterior variances, and, to assess the effect of correlations, as conditional variances when other parameters are given. The easy to interpret ISFs can be used to (a) identify time intervals or regions in dynamical system behaviour where information about the parameters is concentrated; (b) assess the effect of measurement noise on the information gain for the parameters; (c) assess whether sufficient information in an experimental protocol (input, measurements and their frequency) is available to identify the parameters; (d) assess correlation in the posterior distribution of the parameters to identify the sets of parameters that are likely to be indistinguishable; and (e) assess identifiability problems for particular sets of parameters. The Royal Society 2018-05 2018-05-16 /pmc/articles/PMC6000172/ /pubmed/29769407 http://dx.doi.org/10.1098/rsif.2017.0871 Text en © 2018 The Authors. http://creativecommons.org/licenses/by/4.0/ Published by the Royal Society under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original author and source are credited.
spellingShingle Life Sciences–Mathematics interface
Pant, Sanjay
Information sensitivity functions to assess parameter information gain and identifiability of dynamical systems
title Information sensitivity functions to assess parameter information gain and identifiability of dynamical systems
title_full Information sensitivity functions to assess parameter information gain and identifiability of dynamical systems
title_fullStr Information sensitivity functions to assess parameter information gain and identifiability of dynamical systems
title_full_unstemmed Information sensitivity functions to assess parameter information gain and identifiability of dynamical systems
title_short Information sensitivity functions to assess parameter information gain and identifiability of dynamical systems
title_sort information sensitivity functions to assess parameter information gain and identifiability of dynamical systems
topic Life Sciences–Mathematics interface
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6000172/
https://www.ncbi.nlm.nih.gov/pubmed/29769407
http://dx.doi.org/10.1098/rsif.2017.0871
work_keys_str_mv AT pantsanjay informationsensitivityfunctionstoassessparameterinformationgainandidentifiabilityofdynamicalsystems