Cargando…
Information sensitivity functions to assess parameter information gain and identifiability of dynamical systems
A new class of functions, called the ‘information sensitivity functions’ (ISFs), which quantify the information gain about the parameters through the measurements/observables of a dynamical system are presented. These functions can be easily computed through classical sensitivity functions alone and...
Autor principal: | Pant, Sanjay |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6000172/ https://www.ncbi.nlm.nih.gov/pubmed/29769407 http://dx.doi.org/10.1098/rsif.2017.0871 |
Ejemplares similares
-
Correction to ‘Information sensitivity functions to assess parameter information gain and identifiability of dynamical systems’
por: Pant, Sanjay
Publicado: (2018) -
Parameter estimation and uncertainty quantification using information geometry
por: Sharp, Jesse A., et al.
Publicado: (2022) -
Single-cell Ca(2+) parameter inference reveals how transcriptional states inform dynamic cell responses
por: Wu, Xiaojun, et al.
Publicado: (2023) -
Emergence and dynamics of self-producing information niches as a step towards pre-evolutionary organization
por: Carter, Richard J., et al.
Publicado: (2018) -
Optimal foraging and the information theory of gambling
por: Baddeley, Roland J., et al.
Publicado: (2019)