Cargando…

Modeling Renal Disease “On the Fly”

Detoxification is a fundamental function for all living organisms that need to excrete catabolites and toxins to maintain homeostasis. Kidneys are major organs of detoxification that maintain water and electrolyte balance to preserve physiological functions of vertebrates. In insects, the renal func...

Descripción completa

Detalles Bibliográficos
Autores principales: Millet-Boureima, Cassandra, Porras Marroquin, Jessica, Gamberi, Chiara
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6000847/
https://www.ncbi.nlm.nih.gov/pubmed/29955604
http://dx.doi.org/10.1155/2018/5697436
Descripción
Sumario:Detoxification is a fundamental function for all living organisms that need to excrete catabolites and toxins to maintain homeostasis. Kidneys are major organs of detoxification that maintain water and electrolyte balance to preserve physiological functions of vertebrates. In insects, the renal function is carried out by Malpighian tubules and nephrocytes. Due to differences in their circulation, the renal systems of mammalians and insects differ in their functional modalities, yet carry out similar biochemical and physiological functions and share extensive genetic and molecular similarities. Evolutionary conservation can be leveraged to model specific aspects of the complex mammalian kidney function in the genetic powerhouse Drosophila melanogaster to study how genes interact in diseased states. Here, we compare the human and Drosophila renal systems and present selected fly disease models.