Cargando…
Stratification of candidate genes for Parkinson’s disease using weighted protein-protein interaction network analysis
BACKGROUND: Genome wide association studies (GWAS) have helped identify large numbers of genetic loci that significantly associate with increased risk of developing diseases. However, translating genetic knowledge into understanding of the molecular mechanisms underpinning disease (i.e. disease-spec...
Autores principales: | Ferrari, Raffaele, Kia, Demis A., Tomkins, James E., Hardy, John, Wood, Nicholas W., Lovering, Ruth C., Lewis, Patrick A., Manzoni, Claudia |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6000968/ https://www.ncbi.nlm.nih.gov/pubmed/29898659 http://dx.doi.org/10.1186/s12864-018-4804-9 |
Ejemplares similares
-
Weighted Protein
Interaction Network Analysis of Frontotemporal
Dementia
por: Ferrari, Raffaele, et al.
Publicado: (2016) -
PINOT: an intuitive resource for integrating protein-protein interactions
por: Tomkins, James E., et al.
Publicado: (2020) -
Identification of Candidate Parkinson Disease Genes by Integrating Genome-Wide Association Study, Expression, and Epigenetic Data Sets
por: Kia, Demis A., et al.
Publicado: (2021) -
Genome, transcriptome and proteome: the rise of omics data and their integration in biomedical sciences
por: Manzoni, Claudia, et al.
Publicado: (2016) -
Integrating protein networks and machine learning for disease stratification in the Hereditary Spastic Paraplegias
por: Vavouraki, Nikoleta, et al.
Publicado: (2021)