Cargando…
On the use of the not‐at‐random fully conditional specification (NARFCS) procedure in practice
The not‐at‐random fully conditional specification (NARFCS) procedure provides a flexible means for the imputation of multivariable missing data under missing‐not‐at‐random conditions. Recent work has outlined difficulties with eliciting the sensitivity parameters of the procedure from expert opinion...
Autores principales: | Tompsett, Daniel Mark, Leacy, Finbarr, Moreno‐Betancur, Margarita, Heron, Jon, White, Ian R. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6001532/ https://www.ncbi.nlm.nih.gov/pubmed/29611205 http://dx.doi.org/10.1002/sim.7643 |
Ejemplares similares
-
Canonical Causal Diagrams to Guide the Treatment of Missing Data in Epidemiologic Studies
por: Moreno-Betancur, Margarita, et al.
Publicado: (2018) -
Analyses of Sensitivity to the Missing-at-Random Assumption Using Multiple Imputation With Delta Adjustment: Application to a Tuberculosis/HIV Prevalence Survey With Incomplete HIV-Status Data
por: Leacy, Finbarr P, et al.
Publicado: (2017) -
Comment on “Analysis of Longitudinal Trials With Protocol Deviations: A Framework for Relevant, Accessible Assumptions, and Inference via Multiple Imputation,” by Carpenter, Roger, and Kenward
por: Seaman, Shaun R., et al.
Publicado: (2014) -
Multiple imputation of covariates by fully conditional specification: Accommodating the substantive model
por: Bartlett, Jonathan W, et al.
Publicado: (2015) -
Evaluation of two-fold fully conditional specification multiple imputation for longitudinal electronic health record data
por: Welch, Catherine A, et al.
Publicado: (2014)