Cargando…
Combined AC‐electrokinetic effects: Theoretical considerations on a three‐axial ellipsoidal model
AC fields induce charges at the structural interfaces of particles or biological cells. The interaction of these charges with the field generates frequency‐dependent forces that are the basis for AC‐electrokinetic effects such as dielectrophoresis (DEP), electrorotation (ROT), electro‐orientation, a...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6001685/ https://www.ncbi.nlm.nih.gov/pubmed/29466604 http://dx.doi.org/10.1002/elps.201800015 |
_version_ | 1783332062622646272 |
---|---|
author | Gimsa, Jan |
author_facet | Gimsa, Jan |
author_sort | Gimsa, Jan |
collection | PubMed |
description | AC fields induce charges at the structural interfaces of particles or biological cells. The interaction of these charges with the field generates frequency‐dependent forces that are the basis for AC‐electrokinetic effects such as dielectrophoresis (DEP), electrorotation (ROT), electro‐orientation, and electro‐deformation. The effects can be used for the manipulation or dielectric single‐particle spectroscopy. The observation of a particular effect depends on the spatial and temporal field distributions, as well as on the shape and the dielectric and viscoelastic properties of the object. Because the effects are not mutually independent, combined frequency spectra are obtained, for example, discontinuous DEP and ROT spectra with ranges separated by the reorientation of nonspherical objects in the linearly and circularly polarized DEP and ROT fields, respectively. As an example, the AC electrokinetic behavior of a three‐axial ellipsoidal single‐shell model with the geometry of chicken‐red blood cells is considered. The geometric and electric problems were separated using the influential‐radius approach. The obtained finite‐element model can be electrically interpreted by an RC model leading to an expression for the Clausius–Mossotti factor, which permits the derivation of force, torque, and orientation spectra, as well as of equations for the critical frequencies and force plateaus in DEP and of the characteristic frequencies and peak heights in ROT. Expressions for the orientation in linearly and circularly polarized fields, as well as for the reorientation frequencies were also derived. The considerations suggested that the simultaneous registration of various AC‐electrokinetic spectra is a step towards the dielectric fingerprinting of single objects. |
format | Online Article Text |
id | pubmed-6001685 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-60016852018-06-21 Combined AC‐electrokinetic effects: Theoretical considerations on a three‐axial ellipsoidal model Gimsa, Jan Electrophoresis Part II. Modeling and Simulation of AC Electrothermal and Electrokinetic Effects AC fields induce charges at the structural interfaces of particles or biological cells. The interaction of these charges with the field generates frequency‐dependent forces that are the basis for AC‐electrokinetic effects such as dielectrophoresis (DEP), electrorotation (ROT), electro‐orientation, and electro‐deformation. The effects can be used for the manipulation or dielectric single‐particle spectroscopy. The observation of a particular effect depends on the spatial and temporal field distributions, as well as on the shape and the dielectric and viscoelastic properties of the object. Because the effects are not mutually independent, combined frequency spectra are obtained, for example, discontinuous DEP and ROT spectra with ranges separated by the reorientation of nonspherical objects in the linearly and circularly polarized DEP and ROT fields, respectively. As an example, the AC electrokinetic behavior of a three‐axial ellipsoidal single‐shell model with the geometry of chicken‐red blood cells is considered. The geometric and electric problems were separated using the influential‐radius approach. The obtained finite‐element model can be electrically interpreted by an RC model leading to an expression for the Clausius–Mossotti factor, which permits the derivation of force, torque, and orientation spectra, as well as of equations for the critical frequencies and force plateaus in DEP and of the characteristic frequencies and peak heights in ROT. Expressions for the orientation in linearly and circularly polarized fields, as well as for the reorientation frequencies were also derived. The considerations suggested that the simultaneous registration of various AC‐electrokinetic spectra is a step towards the dielectric fingerprinting of single objects. John Wiley and Sons Inc. 2018-03-30 2018-06 /pmc/articles/PMC6001685/ /pubmed/29466604 http://dx.doi.org/10.1002/elps.201800015 Text en © 2018 The Authors. Electrophoresis published by WILEY‐VCH Verlag GmbH & Co. KGaA This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Part II. Modeling and Simulation of AC Electrothermal and Electrokinetic Effects Gimsa, Jan Combined AC‐electrokinetic effects: Theoretical considerations on a three‐axial ellipsoidal model |
title | Combined AC‐electrokinetic effects: Theoretical considerations on a three‐axial ellipsoidal model |
title_full | Combined AC‐electrokinetic effects: Theoretical considerations on a three‐axial ellipsoidal model |
title_fullStr | Combined AC‐electrokinetic effects: Theoretical considerations on a three‐axial ellipsoidal model |
title_full_unstemmed | Combined AC‐electrokinetic effects: Theoretical considerations on a three‐axial ellipsoidal model |
title_short | Combined AC‐electrokinetic effects: Theoretical considerations on a three‐axial ellipsoidal model |
title_sort | combined ac‐electrokinetic effects: theoretical considerations on a three‐axial ellipsoidal model |
topic | Part II. Modeling and Simulation of AC Electrothermal and Electrokinetic Effects |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6001685/ https://www.ncbi.nlm.nih.gov/pubmed/29466604 http://dx.doi.org/10.1002/elps.201800015 |
work_keys_str_mv | AT gimsajan combinedacelectrokineticeffectstheoreticalconsiderationsonathreeaxialellipsoidalmodel |