Cargando…
Quality prediction of synthesized speech based on tensor structured EEG signals
This study investigates quality prediction methods for synthesized speech using EEG. Training a predictive model using EEG is challenging due to a small number of training trials, a low signal-to-noise ratio, and a high correlation among independent variables. When a predictive model is trained with...
Autores principales: | Maki, Hayato, Sakti, Sakriani, Tanaka, Hiroki, Nakamura, Satoshi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6002021/ https://www.ncbi.nlm.nih.gov/pubmed/29902169 http://dx.doi.org/10.1371/journal.pone.0193521 |
Ejemplares similares
-
Electroencephalogram-Based Single-Trial Detection of Language Expectation Violations in Listening to Speech
por: Tanaka, Hiroki, et al.
Publicado: (2019) -
Applying Meta-Learning and Iso Principle for Development of EEG-Based Emotion Induction System
por: Miyamoto, Kana, et al.
Publicado: (2022) -
Prediction of Speech Intelligibility by Means of EEG Responses to Sentences in Noise
por: Muncke, Jan, et al.
Publicado: (2022) -
Introduction to EEG- and speech-based emotion recognition
por: Abhang, Priyanka A, et al.
Publicado: (2016) -
A Generative Model to Synthesize EEG Data for Epileptic Seizure Prediction
Publicado: (2021)