Cargando…
Neural network models of the tactile system develop first-order units with spatially complex receptive fields
First-order tactile neurons have spatially complex receptive fields. Here we use machine-learning tools to show that such complexity arises for a wide range of training sets and network architectures. Moreover, we demonstrate that this complexity benefits network performance, especially on more diff...
Autores principales: | Zhao, Charlie W., Daley, Mark J., Pruszynski, J. Andrew |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6002100/ https://www.ncbi.nlm.nih.gov/pubmed/29902277 http://dx.doi.org/10.1371/journal.pone.0199196 |
Ejemplares similares
-
Orientation processing by synaptic integration across first-order tactile neurons
por: Hay, Etay, et al.
Publicado: (2020) -
Precise and stable edge orientation signaling by human first-order tactile neurons
por: Sukumar, Vaishnavi, et al.
Publicado: (2022) -
Gain, not concomitant changes in spatial receptive field properties, improves task performance in a neural network attention model
por: Fox, Kai J, et al.
Publicado: (2023) -
The spatial structure of a nonlinear receptive field
por: Schwartz, Gregory W., et al.
Publicado: (2012) -
Characterisation of nonlinear receptive fields of visual neurons by convolutional neural network
por: Ukita, Jumpei, et al.
Publicado: (2019)